Variable Valve Actuation for Efficient Exhaust Thermal Management in an Off-road Diesel Engine

Publication channel

Keywords

Year of the publication

2024

Citation

Kim, J., Vallinmaki, M., Tuominen, T., Mikulski, M. Variable Valve Actuation for Efficient Exhaust Thermal Management in an Off-road Diesel Engine. Applied Thermal Engineering, Volume 246, 122940. https://doi.org/10.1016/j.applthermaleng.2024.122940

Language

English

Related to:

Abstract

Exhaust thermal management (ETM) is crucial for effective emission mitigation in integrated exhaust aftertreatment systems of modern off-road diesel powertrains. However, conventional ETM strategies incur a significant fuel efficiency penalty. This study addresses the issue by investigating the application of variable valve actuation (VVA) for efficient ETM. For the first time, this investigation is conducted on a representative state-of-the-art off-road powertrain platform. It explores four VVA strategies with unprecedent level of rigour, employing a model-based approach that enables extended insights beyond stand-alone testing. Experiments with an EU Stage-V off-road diesel engine provide the baseline for validating a one-dimensional model in GT-Suite. A meticulously calibrated, predictive combustion model enables precise cross-evaluation of how VVA strategies affect exhaust gas temperature (EGT), efficiency, engine-out emissions and combustion characteristics, considering all trade-offs. VVA simulations are performed at three low-load operating points, where engine operation borders catalyst light-off temperature (LOT). The findings impartially confirm that cylinder deactivation (CDA) and intake modulation are the most promising VVA strategies for off-road engines, with EGT increments surpassing +250 °C and +150 °C respectively, accompanied by minor fuel penalties (up to +3.5 %). CDA demonstrated fuel savings of up to −2.5 % at certain points, due to reduced pumping and friction losses. Intake modulation displayed large reduction in engine-out NOx (>90 %) and minimal penalties in carbon emissions (HC, CO, and soot). The results underscore VVÁs potential as an efficient ETM option to help the next generation of off-road diesels to comply with upcoming EPA Tier 5 emission legislation.