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This thesis investigates the thermal behaviour of a commercial 21700 NCA lithium-ion cell
through combined experimental characterisation and lumped thermal modelling. The work
focuses on quantifying heat generation mechanisms and predicting temperature evolution
under various operating conditions. Experimental measurements include open-circuit
voltage profiling, entropic heat coefficient determination, heat-transfer coefficient
estimation, and charge—discharge cycling at 0.5C, 1C, and 2C. Additional calorimetric
experiments are conducted to validate the thermal model under controlled thermal boundary
conditions. The modelling framework incorporates reversible and irreversible heat
generation, temperature-dependent parameters, and a thermal time constant extracted from
cooling-curve analysis. Model predictions are evaluated against measured temperature
responses, showing reasonable agreement across all tested C-rates. The results highlight the
influence of current rate on heat generation, voltage relaxation, and thermal response, while
demonstrating the suitability of a calibrated lumped model for representing the thermal
dynamics of cylindrical Li-ion cells. The developed methodology provides a practical
foundation for future battery thermal management design and for scaling cell-level thermal
characteristics to module-level simulations.
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SYMBOLS AND ABBREVIATIONS

Roman characters

A Area m?

(O Specific heat capacity JK 1kg™!
Cu Battery capacity A.h

h Heat transfer coefficient W.m?2.K!
1 Current A

P Generated heat J

T Temperature °C

T Time constant S

U Voltage A%

V Voltage A%
Subscripts

a Ambient temperature

conv Convection

diss Dissipation

exp Experimental

max Maximum

min Minimum

n Nominal

ocv Open circuit voltage

ohm Ohmic overpotential

rad Radiation



sim Simulation

0 Initial

Abbreviations

Al Artificial intelligence

ANN Artificial neural networks

BEV Battery electric vehicle

BMS Battery management system

BTMS Battery thermal management systems
CC Constant Current

CCD Cyclic Charge and Discharge

CvV Constant Voltage

DMC Dimethyl carbonate

EC Ethylene carbonate

ECM Equivalent circuit models

EHC Entropic heat coefficient

EV Electric vehicles

HP Heat pipe

HPPC Hybrid pulse power characterization
IEC International electrotechnical commission
IHTA Inverse heat transfer analysis

ISC Internal short circuit

LCO Lithium Cobalt Oxide

LFP Lithium iron phosphate



LIB Lithium-ion battery

LMO Lithium manganese oxide

LSPM Lumped single particle model

NCA Lithium nickel cobalt aluminium Oxide
NMC Lithium nickel manganese cobalt oxide
NREL National renewable energy laboratory
ocv Open-circuit voltage

PDE Partial differential equation

PEG Polyethylene glycols

PET Polyethylene Terephthalate

P2D Pseudo-2D

RC Resistor-capacitor

RSME Root mean square error

SEI Solid electrolyte interphase

SOH State of health

SPM Single particle model

SVM Support vector machine

3D Three-dimensional
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1 Introduction

Lithium-ion batteries are widely used in portable electronics, electric vehicles, and energy-
storage systems due to their high energy density, long cycle life, and efficient performance.
However, their thermal behavior remains a critical challenge, as temperature strongly
influences internal resistance, ageing, safety, and overall performance. Understanding and
predicting heat generation is therefore essential for ensuring reliable and safe battery

operation.

During charge and discharge, electrochemical processes generate heat through both
irreversible losses and reversible thermodynamic effects. The magnitude of this heat depends
on the operating conditions, cell chemistry, and physical design of the cell. Cylindrical cells
are widely adopted due to their robustness and manufacturing practicality, but their compact

geometry can result in significant temperature rise under high current loads.

This thesis investigates the thermal behavior of a 21700 NCA cylindrical cell by developing
a lumped thermal model capable of predicting cell temperature during operation. The model
incorporates experimentally measured open-circuit voltage, entropic heat coefficients, and a
thermal time constant obtained from cooling-curve analysis. Experimental characterization,
including open circuit voltage (OCV) profiling, charge and discharge cycling at various C-

rates, and calorimetric tests, provides the input data required to validate the model.

The objective of this work is to characterize the heat generation of the cell and develop a
calibrated thermal model that can support future thermal management strategies for

cylindrical lithium-ion batteries.

1.1 Lithium-ion Batteries Overview

The development of lithium-ion batteries began in the early 1980s in response to the demand
for lightweight, high-capacity rechargeable power sources. Dr. Akira Yoshino created the
first practical lithium-ion battery prototype in 1983, using lithium cobalt oxide (LiC00-) as
the cathode and polyacetylene as the anode. The technology was patented in 1985, and



commercialized by Sony in 1991, marking the beginning of a new era in energy storage

(Yoshino, 2012).

In everyday usage, the term battery is often applied to any electrochemical energy storage
device, whether it is a single cell, a module, or a complete battery pack. A cell is the
fundamental electrochemical unit that converts chemical energy directly into electrical
energy. When multiple cells are electrically connected, typically in series or parallel, they
form a module, which increases the overall voltage or capacity. Several modules, combined
with monitoring, control units, fuses, cooling systems, and structural enclosures, form a
battery pack, which is the fully functional system used in applications such as electric
vehicles or energy storage systems. Although some definitions specify that a battery must
contain at least two cells, this distinction is not always upheld. In consumer and technical
contexts alike, the term "battery" may refer to a single cell, a module, or a pack depending
on the level of integration. In this thesis, the term “cell” will be used to refer specifically to
the electrochemical unit, while “battery” will denote either the complete energy storage
assembly or be specified further as a module or pack, depending on context. (Linden &

Reddy, 2001).

1.1.1 Working Principles of Lithium-ion Batteries

A lithium-ion (Li-ion) battery consists of active materials at the positive and negative
electrodes, an electrolyte, and a separator. The separator functions as a barrier between the
electrodes to prevent short circuits. The active materials are responsible for the oxidation
and reduction reactions that drive battery operation. These reactions occur through an
intercalation process, where lithium ions are inserted into or removed from host materials
without causing significant structural changes. Typically, the positive electrode is made of a
lithium metal oxide or phosphate, while the negative electrode is composed of graphite. The
electrolyte contains a lithium salt, such as LiPFs, dissolved in a mixture of organic solvents
like ethylene carbonate (EC) and dimethyl carbonate (DMC). Aluminium and copper are
commonly used as current collectors for the positive and negative electrodes,

respectively(Energy, 2021).

During discharge as shown in Figure 1, lithium ions are de-intercalated from the negative

electrode and intercalated into the positive electrode, while Li in negative electrode



undergoes oxidation and the Li-ions in the positive electrode undergo reduction. This
movement of lithium ions is driven by the potential difference between the electrodes, and
electrons flow through an external circuit, producing an electric current. When the battery is
charged, the process is reversed: lithium ions move from the positive to the negative
electrode. In the initial cycles, parasitic reactions between the electrolyte and the negative
electrode form a passivation layer known as the solid—electrolyte interphase (SEI). The
formation of this layer results in an irreversible loss of lithium, which can cause a small
reduction in capacity. However, the rated capacity of a Li-ion cell accounts for this initial

loss (Energy, 2021).
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Figure 1 Discharging Process of a Lithium-ion Battery (Korthauer, 2018)

1.1.2 Overview of Li-ion Battery Cell Formats

Lithium-ion batteries are manufactured in several standardized cell formats, each designed
to meet specific requirements related to energy density, mechanical stability, thermal
performance, and packaging efficiency (Horiba, 2014). Although the fundamental
electrochemical principles are identical across all configurations, the external geometry and
internal assembly strongly influence the cell’s behaviour, integration flexibility, and
suitability for different applications. The most common commercial formats include
cylindrical, prismatic, pouch, and coin cells, each offering distinct advantages and trade-offs

in terms of performance, safety, and manufacturing complexity. A brief overview of these



cell types is presented below. Figure 2 illustrates the various lithium-ion cell formats

currently available on the market, and the following sections describe each type in detail.
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Figure 2 Schematic Representation of Common Lithium-ion batteries: (A) coin cell, (B) cylindrical cell, (C) prismatic cell,
and (D) pouch cell (Liang et al., 2019).

1.1.2.1 Cylindrical Cells

In cylindrical cells, the electrodes and separator are rolled tightly in a spiral configuration
and enclosed within a cylindrical casing. These cells feature a robust body with flat
terminals, offering high cycle stability but relatively low packaging efficiency. Cylindrical
cells are typically identified using five-digit codes; for instance, the widely used 18650 cell
has a diameter of 18 mm and a length of 65.0 mm. Other commonly used cylindrical formats
include 14500, 14650, 18500, 21700, 26650, and 32650. These cells are frequently used in
applications such as laptops, medical devices, communication systems, e-bikes, power tools,

and security equipment (Arote, 2022).

1.1.2.2 Pouch Cells

Pouch cells are characterized by their flexible, lightweight design, which utilizes laminated
aluminium foil as the outer casing instead of a rigid metal enclosure. This structure enables
exceptionally high packaging efficiency, over 90%, along with reduced weight and greater

design flexibility, making pouch cells particularly suitable for compact electronic devices



and space-constrained applications. Internally, they consist of stacked layers of anodes and
cathodes, separated by a porous non-conductive separator. These components are enclosed
in a multi-layered laminate: the innermost layer is a heat-sealable, electrolyte-resistant
polymer (e.g., modified polypropylene), the middle layer is aluminium for barrier protection
and thermal conductivity, and the outer layer is typically a durable polymer such as nylon or
polyethylene terephthalate (PET), providing mechanical strength, insulation, and
printability. Electrical connectivity is established by welding metallic tabs to the current
collectors, allowing external connections. Despite their many advantages, pouch cells are
more vulnerable to mechanical damage compared to rigid battery formats (Gopinadh et al.,

2022).

1.1.2.3 Prismatic Cells

Prismatic cells use a semi-rigid or rigid rectangular casing, often made of aluminium or steel,
providing high structural stability. The internal components, electrodes and separator, are
stacked in sheets. These cells are preferred for space-constrained applications where
minimizing swelling is important. They are marked with six-digit codes. For example, a
504050 cell measures 5.0 mm in thickness, 40 mm in width, and 50 mm in length (Arote,
2022).

1.1.2.4 Coin Cells

Coin cells, also known as button cells, are small, circular batteries commonly used in
compact, portable devices such as wristwatches, LED lights, healthcare instruments (e.g.,
glucose meters, thermometers, heart rate monitors), calculators, remote controls, and car
keys. These batteries typically consist of a stainless-steel casing, a graphite-coated copper
foil serving as the anode (Purwamargapratala et al., 2020). The diameter of a coin cell is

greater than its height, giving it its distinctive shape.

Lithium-ion coin cell formats follow International Electrotechnical Commission (IEC)
standards and are designated by prefixes such as “LIR.” In this nomenclature, the letters
indicate a rechargeable lithium-ion chemistry, while the numerical code specifies the cell

diameter and thickness in tenths of a millimeter (e.g., LIR2032 corresponds to 20 mm x 3.2



mm). These cells typically consist of a stainless-steel case and cap, a separator, a graphite-
based anode, a lithium-intercalating cathode material, and an electrolyte. Common
rechargeable lithium-ion coin cell formats include LIR2032, LIR2025, and LIR2450 (Arote,
2022).

1.1.3 Overview of Li-ion Battery Chemistries

Lithium-ion batteries are composed of various chemistries, each offering distinct advantages
and trade-offs in terms of energy density, safety, lifespan, and cost. The cathode material
plays a critical role in determining the overall performance and suitability of the battery for
specific applications. Lithium cobalt oxide (LiCoO2, LCO) is widely used in portable
electronics due to its high energy density, although it suffers from thermal instability and
moderate cycle life. Lithium manganese oxide (LiMn20s, LMO) provides improved thermal
stability and safety but has a shorter lifespan, making it suitable for power tools and some
electric vehicles (Horiba, 2014). Lithium iron phosphate (LiFePOa, LFP) offers outstanding
thermal stability and long cycle life, making it a preferred choice for electric vehicles and
stationary storage, despite its lower energy density (Stan et al., 2014). Lithium nickel
manganese cobalt oxide (LiNiMnCoO., NMC) represents a balanced option, combining
good energy density, power capability, and cycle life, and is widely adopted in electric
mobility solutions (Horiba, 2014). Lithium nickel cobalt aluminium oxide (LiNiCoAlO-,
NCA) delivers high specific energy and long lifespan, and is commonly found in premium

electric vehicles, though it poses certain safety and cost concerns (Stan et al., 2014).

Alongside the cathode, the anode material contributes significantly to the overall behaviour
and performance of the battery. Graphite remains the dominant commercial anode material
due to its structural stability and reliable lithium-intercalation behaviour. However, its
moderate theoretical capacity and susceptibility to lithium plating at high charge rates
present notable limitations, motivating the development of higher-capacity and more robust
anode alternatives (X. Chen et al., 2025; Koech et al., 2024). Silicon provides exceptionally
high theoretical capacity and demonstrates strong electrochemical performance, but its large
volume expansion during lithiation leads to stress, cracking, and instability of the SEI layer.
To mitigate these effects, silicon is often incorporated into structured or composite designs

that help accommodate the volume change and preserve mechanical integrity (Dasari &



Eisenbraun, 2021; Koech et al., 2024). Lithium titanate (LTO) is identified as a promising
anode material due to its minimal volume change during cycling, which provides strong
structural stability and improved safety compared with graphite. Although LTO exhibits low
electronic conductivity and a moderate theoretical capacity, its performance can be
substantially enhanced through nanostructured and composite material designs. LTO-based
composites demonstrate reduced charge-transfer resistance, improved rate capability, and
excellent cycling stability, achieving 97.2% capacity retention at 10C after 1000 cycles (Z.
Zhao, 2023). Other anode materials, including alloy-type systems such as silicon and tin and
arange of metal oxides, can offer higher capacity or enhanced electrochemical performance.
However, these materials typically experience significant volume changes, pulverization,
and limited electronic conductivity during cycling, which compromise their stability (Koech

et al., 2024).

The initial phase of this research focused on the selection of suitable lithium-ion battery
chemistries for comparative analysis. Four commercially established cathode materials,
Nickel Cobalt Aluminium Oxide (NCA), Nickel Manganese Cobalt Oxide (NMC), Lithium
Iron Phosphate (LFP), and Lithium Manganese Oxide (LMO), were selected because they
represent technologically mature and widely deployed systems in modern lithium-ion
batteries. These chemistries were chosen due to their distinctly different electrochemical and
thermal characteristics, which provide a robust basis for evaluating performance, safety, and
degradation mechanisms under diverse operating conditions. Collectively, these four cell
chemistries account for more than 90 percent of global lithium-ion cell production for
traction and stationary energy storage applications (Assi & Amer, 2025). In addition, they
span a wide range of specific energy, approximately 100 to 260 Wh kg—1, and cycle life,
approximately 500 to 7000 cycles, thereby providing a representative and comprehensive
dataset for comparative electro-thermal modelling and thermal behaviour analysis (M. K.

Tran, Dacosta, et al., 2021; Walvekar et al., 2022).

NCA provides high specific energy of up to 260 Wh/kg and strong power capability, which
makes it a reference material for high performance lithium-ion cells. However, its reduced
thermal stability and relatively high cost, mainly driven by the high content of cobalt and
nickel, remain important limitations (X. Chen et al., 2025; Velev et al., 2024). NMC offers
a balanced compromise between energy density in the range of 180 to 220 Wh/kg, safety,
and cost, and typically achieves 1000 to 2000 charge discharge cycles. Its degradation



behaviour is strongly influenced by the nickel to manganese ratio and the applied current
rate (Assi & Amer, 2025; Torregrosa et al., 2024). LFP is characterised by excellent thermal
and chemical stability, long cycle life in the range of 3000 to 7000 cycles, and enhanced
safety due to the absence of nickel and cobalt. Although its specific energy of 120 to 160
Wh/kg is lower than that of nickel rich chemistries, its structural robustness makes it highly
suitable for applications that prioritise safety and durability (Walvekar et al., 2022). Lithium
manganese oxide (LMO) provides high power capability, with a typical specific energy of
approximately 120 Wh/kg, low material cost, and good thermal stability. However, it suffers
from reduced cycle life, typically less than or equal to 1000 cycles, which is mainly
associated with manganese dissolution and structural degradation under elevated operating

temperatures (Lu et al., 2023; M. K. Tran, Dacosta, et al., 2021).

Figure 3 summarizes the key performance metrics of these chemistries, enabling evaluation
of trade-offs among energy density, cycle life, safety, and cost, which are critical for battery

design, thermal management, and application specific optimization.

NCA NMC
Safety Safety
Cycle Life Specific Power Cycle Life Specific Power
cost Specific Energy cost Specific Energy
LMO LFP
Safety Safety
Cycle Life Specific Power Cycle Life Specific Power
cost Specific Energy cost Specific Energy

Figure 3 lllustrating the Key Performance Characteristics of Four Lithium-ion Battery Chemistries: NCA, NMC, LFP and
LMO. Each radar plot compares Safety, Specific Power, Specific Energy, Cost and Cycle Life (Walvekar et al., 2022).



1.1.4 Thermal Runaway in Lithium-ion Batteries

The cathode in a lithium-ion battery is typically composed of lithium transition metal oxides
or phosphates with a high redox potential, which determines the operating voltage of the cell
and contributes to its energy capacity. The anode consists of materials with a low redox
potential and stable electrochemical behaviour, enabling reversible lithium intercalation and
long term cycling stability. The separator and electrolyte are critical components that
strongly influence the overall performance of lithium-ion batteries. Their physicochemical
properties affect ionic conductivity, thermal stability, cycle life, and capacity retention. The
separator provides electrical insulation between the electrodes while allowing lithium-ion
migration, and the electrolyte facilitates efficient ion transport between the electrodes during

operation.

Figure 4 illustrates the causes of thermal runaway in lithium-ion batteries, which can be
triggered by three types of abuse: mechanical, electrical, and thermal. Mechanical abuse
includes crushing, impacts, or puncturing; electrical abuse involves overcharging, deep
discharging, or short circuits; and thermal abuse results from high temperatures or exposure
to fire. These conditions can damage the separator, leading to an internal short circuit (ISC),
which generates excessive heat. This heat can accelerate chemical side reactions, release
flammable gases, increase internal pressure, and eventually cause fire or explosion. The
presence of flammable liquid electrolytes further increases this risk. Using solid-state

electrolytes is one possible solution to improve battery safety.
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Figure 4 Factors Leading to Thermal Runaway in Lithium-ion Batteries (X. Feng et al., 2018)



The thermal runaway process is often described by three characteristic temperatures. T is
the temperature where self-heating begins, usually due to decomposition of the solid
electrolyte interphase (SEI). T» is the temperature at which thermal runaway is triggered,
often caused by separator failure and internal short circuit. At this point, the temperature rise
becomes rapid. T3 is the highest temperature reached during the process. Some thermal
models focus on the entire process from T; to Tz, while others simulate only part of the
response, such as from T> to Tz (M.-K. Tran et al., 2022). Figure 5 illustrates these stages
and highlights the sequence of thermal and electrochemical reactions leading to thermal

runaway in lithium-ion batteries.
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Figure 5 Runaway Mechanism and Critical Temperature Ranges for lithium-ion Batteries (H. Li et al., 2019; Qi et al.,
2025).

1.2 Battery Thermal Management Systems (BTMS)

As electric vehicles (EVs) continue to evolve, manufacturers adopt different strategies in
battery design and configuration to meet growing demands for performance and driving
range. With the increasing capacity of EV batteries, the need for efficient thermal
management becomes even more important. According to the Global EV Outlook Report
(IEA, 2020), battery electric vehicles (BEVs) are expected to achieve average driving ranges
of 350 to 400 km by 2030, supported by battery capacities of approximately 70-80 kWh.
These advances bring batteries closer to the performance range of conventional fuel-powered
vehicles (He, 2024). However, as battery size and power increase, so does the importance of
integrating advanced battery thermal management systems (BTMSs). These systems play a

key role in ensuring battery safety, extending lifespan, and maintaining consistent



performance under various operating conditions. As the industry shifts toward more
sustainable transportation solutions, the implementation of reliable and efficient BTMS

becomes essential in supporting the next generation of EV technologies.

Lithium-ion batteries (LIBs), which are widely used in EVs, are sensitive to both high and
low operating temperatures, as well as to temperature inconsistencies within the battery
pack. The primary goal of a BTMS is to keep the entire battery within a safe and efficient
temperature range during operation and charging. However, thermal performance is not the
only consideration. A practical BTMS must also be lightweight, scalable, energy-efficient,
and compatible with other components within the battery pack. It is generally recommended
that the BTMS should not exceed 20% of the total battery pack weight, and it should not
interfere with critical elements such as wires, busbars, or structural components (Olabi et al.,

2022).

Battery performance

Increased / Optimal \ Intensified

resistance | : temperature | side reaction
: i 5
—-40 15C 35C 90 - 120°C
Charge failure  Optimal temperature Thermal runaway

Figure 6 Temperature window ensuring optimal LIB efficiency (lanniciello et al., 2018)

In terms of thermal targets, effective cooling strategies aim to maintain the maximum battery
temperature (Tmax) below 40°C, and preferably under 35°C, while ensuring that the
minimum temperature (Tmin) remains above 15°C during colder conditions. To promote
uniform performance and reduce degradation, the temperature variation within the battery

pack (AT) should be kept under 5°C.

BTMS technologies can be categorized in several ways, including active or passive systems,

heating or cooling approaches, and by the type of cooling method used such as air, liquid,



phase change materials (PCM), or heat pipes (HP). Active systems, which use fans or pumps
to drive cooling, are common in liquid and air-based designs and are known for their high
efficiency, though they add system complexity. In contrast, passive systems use PCMs or
HPs to dissipate heat without the need for external power. PCM-based systems are
particularly useful for improving temperature uniformity, while HPs are valued for their fast

response and high thermal conductivity (Olabi et al., 2022).

An overview of different cooling methods is presented in Figure 7, and will be explored in

more detail below.
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Figure 7 Categories of Battery Thermal Management Systems (Olabi et al., 2022)

1.2.1 Active Cooling

Active cooling methods are essential in battery thermal management systems (BTMS),
particularly for applications involving high power demands such as fast charging, steep
accelerations, or prolonged operation. These systems employ external mechanisms to drive
a working fluid, typically air or liquid, to effectively dissipate the heat generated during
battery operation. By offering enhanced thermal regulation and precise temperature control,
active cooling helps maintain battery safety, efficiency, and lifespan (Z. Zhao et al., 2021).
The two most common active cooling strategies are air-based and liquid-based systems,

which are discussed in detail below.



1.2.1.1 Air Cooling

Air-based cooling systems are widely adopted in BTMS due to their simplicity, reliability,
cost-effectiveness, and safety. Air, being abundant and having excellent dielectric properties,
eliminates the need for electrical isolation between coolant and battery cells. This allows for
flexible integration with various cell geometries and simplifies battery-swapping designs by

removing the need for liquid coolants.

Air BTMS typically employs blowers or air conditioning units to regulate battery
temperature. Forced air convection provides higher heat rejection compared to natural
convection, but it may generate additional noise and require larger ducts and blowers,
increasing the system's size, weight, and parasitic power consumption, which may offset its

inherent advantages (Basu et al., 2016).

Recent studies have focused on improving air cooling performance by optimizing cell layout,
airflow paths, or combining air cooling with other thermal strategies (Basu et al., 2016).
Among these, cell arrangement plays a crucial role. Poor layout can restrict airflow, trap
heat, and create thermal hotspots, posing safety and performance risks during EV operation

(Yang et al., 2015).
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Figure 8 Schematic diagram of (a) an air-based battery cooling system, and cell arrangement configurations: (b) aligned,
(c) staggered, and (d) cross (He, 2024)

It is also important to highlight an additional configuration of the air cooling system. In terms

of airflow direction, various path configurations have been proposed and can be mainly



categorized into three types: U-type, Z-type, and other novel designs, as illustrated in Figure
9. The U-type and Z-type represent conventional layouts. In the U-type battery pack, where
both the inlet and outlet are located on the same side, cooling air enters through the lower
duct, passes through the channels between adjacent battery cooling plates, and exits as heated
air from the upper vent via the outlet. In contrast, the Z-type battery pack positions the inlet
and outlet on opposite sides (He, 2024). Since the outlet is fixed in these conventional
designs, (Y. Liu & Zhang, 2019) proposed a novel J-type airflow configuration incorporating

two outlets controlled by valves to improve cooling flexibility.
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Figure 9 (a) U-type, (b) Z-type, and (c) J-type BTMS configurations (He, 2024).

1.2.1.2 Liquid Cooling

Liquid cooling is one of the most effective thermal management methods for lithium-ion
battery systems, and it can be categorized into two main types: indirect cooling and direct
cooling (also referred to as immersion cooling), depending on whether the coolant comes

into direct contact with the battery components.



In indirect liquid cooling, the coolant circulates through components such as cooling plates
(E etal., 2018), discrete tubes (Xia et al., 2017), or cooling jackets (Sheng et al., 2021) placed
in contact with the outer surfaces of the battery cells. This method allows the heat generated
by the battery to be transferred away without the coolant directly touching the cells, thereby
reducing the risk of electrical hazards (Thakur et al., 2020).

On the other hand, direct liquid cooling involves full contact between the coolant and the
battery. This requires the use of non-conductive fluids to prevent short circuits. The key
advantage of this method is the significantly improved thermal contact area, resulting in a
much higher heat transfer rate. Direct liquid cooling can be further divided into single-phase
and two-phase systems, based on whether the coolant undergoes a phase change during heat
absorption. Compared to indirect systems, direct liquid cooling generally provides better
thermal regulation and more uniform temperature distribution across the battery pack. The
direct contact between the battery and coolant also allows for simpler flow path designs and
reduces the complexity of sealing systems, thereby lowering the risk of coolant leakage and
subsequent failures. Despite these advantages, direct liquid cooling is not yet widely
implemented in commercial electric vehicles due to challenges such as fluid selection, cost,

and safety considerations (J. Liu et al., 2023).

(a)

Figure 10 Schematic lllustration of (a) Direct and (b) Indirect (Trumony, 2025) Liquid Cooling Methods for Battery Packs



1.2.2 Passive Cooling

Passive cooling strategies in Battery Thermal Management Systems (BTMS) have gained
traction due to their ability to regulate battery temperature without relying on external energy
input or complex mechanical components (Siddique et al., 2018). These systems capitalize
on the inherent properties of materials and physical phenomena, such as latent heat
absorption, to dissipate heat. Compared to active systems, passive methods offer advantages
such as reduced weight, improved reliability, and lower parasitic power consumption,
making them especially suitable for compact or cost-sensitive applications (Nicholls et al.,
2024). Among the most widely studied passive approaches are phase change materials
(PCMs) and heat pipes (HPs), both of which have shown promise in maintaining temperature
stability and improving battery safety (Sharifi et al., 2024). The following sections explore
the mechanisms, classifications, and performance characteristics of these passive cooling

technologies in detail.

1.2.2.1 Phase Change Materials (PCM)

PCMs have recently gained attention as a promising solution for managing the thermal
behavior of lithium-ion batteries. Compared to conventional air or liquid cooling methods,
PCMs offer distinct advantages, primarily due to their ability to absorb and store significant
amounts of heat via latent heat during phase transitions between solid and liquid states.
Figure 11 illustrates this thermal response, highlighting the isothermal segment that
corresponds to the phase change process. When the battery temperature rises near the PCM's
melting point, the material begins to melt and absorbs heat, effectively maintaining a stable
temperature close to the phase change temperature. By carefully selecting a PCM with an
appropriate melting point, the battery can be kept within its optimal operating temperature
range. During this melting process, the PCM continues to absorb heat without a significant
increase in temperature until the phase change is complete. Unlike traditional materials that
rely on sensible heat storage, PCMs utilize latent heat, which enables a much higher heat
storage capacity in a compact and lightweight form. PCM-based cooling systems are entirely
passive, requiring no fans, pumps, or external power sources. This passive nature not only

reduces system complexity and maintenance needs but also enhances reliability.



Additionally, PCMs can help suppress thermal runaway events by passively absorbing
excess heat generated during uncontrolled exothermic reactions, potentially preventing

dangerous temperature spikes (Nasiri & Hadim, 2025).
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Figure 11 Temperature vs. Time profile of a Phase Change Material (PCM) during heating

However, one of the main limitations of PCMs is their inherently low thermal conductivity,
which slows both the rate of heat absorption from the battery and the rate of heat dissipation
to the environment. This can reduce the effectiveness of PCM-based systems, especially in
applications with high heat loads or rapid charge/discharge cycles. As a result, improving
the thermal conductivity of PCMs through material enhancement strategies has become a

key area of research in battery thermal management (Dong et al., 2023).

One way to classify PCMs is by the type of phase transition they undergo. These include
solid-solid (SSPCMs), solid-liquid (SLPCMs), solid-gas (SGPCMs), and liquid-gas
(LGPCMs) transitions (Maknikar & Pawar, 2023; Pielichowska & Pielichowski, 2014; W.
Wu et al., 2020). Among these, solid-liquid PCMs (SLPCMs) are the most used in battery
thermal management systems because they offer a high capacity for storing thermal energy
and experience only minimal volume change during melting and solidifying (W. Wu et al.,
2020). However, one drawback is that they can leak when in liquid state. To address this,
researchers often add materials known as functional fillers to stabilize the structure and
improve heat transfer (Zhi et al., 2022). In contrast, solid-solid PCMs (SSPCMs) avoid the

leakage issue entirely because they do not melt. Instead, they change their internal crystal



structure during phase transition. This makes them a stable and clean option, especially in

applications where dimensional stability and cleanliness are essential (Zeng et al., 2024).

paraffin®

Figure 12 Classification of Phase Change Materials (PCMs)

The second classification is based on chemical composition, dividing PCMs into organic,
inorganic, and eutectic types. Organic PCMs are preferred in many applications due to their
stability, non-corrosiveness, and relatively high latent heat capacity. They include paraffin
hydrocarbons whose properties improve with longer carbon chains. However, increasing the
chain length also elevates the melting point, which may be unfavorable for battery thermal
management applications. Non-paraffins such as fatty acids, esters, alcohols, and
polyethylene glycols (PEGs) offer alternative phase-change options, providing a wider range
of melting temperatures and improved tunability for specific thermal management
requirements (lanniciello et al., 2018). Despite their benefits, organic PCMs suffer from low
thermal conductivity, flammability, and potential leakage during the melting phase, all of
which can increase thermal resistance and safety risks in BTMS (Cai et al., 2023; C. Liu et
al., 2020; Zhi et al., 2022). Inorganic PCMs, such as hydrated salts and metal alloys, offer
better thermal conductivity and latent heat values across a broad temperature range (—100

°C to +1000 °C), but they face issues like supercooling, corrosion, and phase separation



(Avik, 2024). Hydrated salts like CaCl.-6H.O and MgCl.-6H20 are among the most
researched for PCM applications. Metal-based PCMs, though highly conductive, are dense,
expensive, corrosive and less practical for large-scale systems (lanniciello et al., 2018).
Eutectic PCMs, which are mixtures of two or more pure materials, exhibit congruent melting
and solidification behavior at a fixed temperature, often lower than the components
themselves (Milian et al., 2017). These can be categorized into organic—organic, inorganic—
inorganic, and organic—inorganic eutectics (Baetens et al., 2010; Zhi et al., 2022). While
eutectic PCMs offer enhanced thermal reliability and tunable melting points, their thermal
conductivity and long-term performance remain underexplored (C. Liu et al., 2020; Nazir et

al., 2019).

Lastly, PCMs are classified by temperature range, which is critical for selecting the
appropriate material for BTMS applications. One classification approach groups PCMs into
low-temperature (<220 °C), medium-temperature (220420 °C), and high-temperature
(>420 °C) categories (Alehosseini & Jafari, 2020). A more BTMS-relevant classification
proposed by Cai et al., 2023) defines low-temperature PCMs as those melting below 100 °C,
medium-temperature PCMs between 100 and 300 °C, and high-temperature PCMs above
300 °C. For lithium-ion battery systems, PCMs with melting points between 20 and 50 °C
are recommended, as they help maintain operating temperatures below the safety threshold
of 50 °C (Rao et al., 2011). Organic PCMs are suited for low-temperature conditions, while
inorganic PCMs are more suitable for high-temperature thermal storage (Y. Zhao et al.,

2022).

1.2.2.2 Heat Pipes

Heat pipes (HPs) have become a popular solution for temperature regulation across many
residential and commercial applications, largely because of their exceptional heat transfer
abilities. Often called "thermal superconductors", HPs can conduct heat up to ninety times
more efficiently than a copper rod of the same size. This property allows them to maintain a
nearly uniform temperature at the evaporator surface. Their adaptable geometry also makes
them suitable for integration into various spatial configurations. As a result, HPs are
increasingly viewed as an effective option for cooling and temperature control in hybrid and

electric vehicle (HEV/EV) battery systems (Afzal et al., 2023).



At their core, heat pipes operate using a two-phase heat transfer mechanism, which allows
them to move substantial amounts of thermal energy with minimal temperature differences.
This phase-change process provides a significantly higher effective heat transfer coefficient
compared to conventional single-phase systems. Additionally, HPs do not require any
auxiliary coolant-circulation system, which reduces system complexity and energy

consumption (Tardy & Sami, 2009; Xiao & Faghri, 2008).

As illustrated in Figure 13, a heat pipe typically consists of a closed metal tube divided into
three sections: the evaporator, the adiabatic zone, and the condenser. Inside this sealed
structure, a working fluid exists in both liquid and vapor phases. When heat is applied to the
evaporator, the fluid absorbs this energy and vaporizes. The resulting vapor travels to the
condenser, where it releases its latent heat and returns to a liquid state. This extracted heat is
usually removed through a cooling loop, commonly air or water based. Finally, the liquid
flows back to the evaporator section through a wick structure via capillary action. Thanks to
their high thermal efficiency, passive operation, and design flexibility, heat pipes present a
highly promising approach for future battery thermal management systems (Afzal et al.,
2023).
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Figure 13 Schematic of a heat pipe illustrating two-phase heat transfer via vapor flow and liquid return through the wick
structure(Afzal et al., 2023).
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1.2.3 Hybrid

Recently, hybrid cooling techniques that integrate passive and active cooling strategies have
gained increasing attention to address the growing thermal management challenges in battery

modules. These approaches are particularly relevant under extreme operating conditions



such as high-speed driving, uphill movement, or fast charging, where the charging rate can
reach 4C to 6C with power levels up to 400 kW, significantly exceeding the conventional
1.5-2.0C rates used in typical electric vehicles. A common hybrid configuration involves
the combination of PCM cooling with forced air, liquid, or heat pipe systems. Figure 11
illustrates various hybrid cooling strategies used in battery thermal management. Such
integration helps leverage the latent heat absorption of PCMs while enabling active heat
removal to maintain acceptable temperature ranges. Studies have shown that PCM-liquid
cooling systems can effectively control the maximum temperature during high-rate
discharges, although maintaining uniform temperature distribution across the module
remains a challenge. Temperature differences have often exceeded the ideal threshold of
5°C, highlighting the need for further optimization in both system design and thermal
uniformity. Moreover, hybrid systems generally introduce additional weight due to the
inclusion of PCMs, pumps, fans, and heat sinks. Since increased weight directly affects
vehicle energy efficiency, lightweight design should also be a key optimization objective

alongside thermal performance parameters (X. Wu et al., 2020).
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Figure 14 Basic layout of hybrid battery thermal management systems: (a) air—PCM, (b) liquid—PCM, and (c) heat pipe
(Vikram et al., 2024) configurations.

1.3 LIB Modelling Approaches

To design efficient and safe battery systems, especially for electric vehicles (EVs), it is

crucial to accurately model both the electrochemical and thermal behaviour of lithium-ion



batteries. Battery modelling approaches are generally categorized into empirical,
electrochemical, and data-driven models. Empirical models, such as equivalent circuit
models (ECMs), are derived from experimental data and widely used in battery management
systems (BMS) due to their simplicity and low computational demands. These models
typically consist of combinations of resistors and capacitors to represent the dynamic
electrical behaviour of the battery (M. K. Tran, Mathew, et al., 2021). In contrast,
electrochemical models, including the Pseudo-2D (P2D) and Single Particle Model (SPM),
provide deeper insight by solving partial differential equations based on ion transport,
reaction kinetics, and spatial variations within the cell, offering a detailed understanding of
the internal physical and chemical processes (S. Han et al., 2021). Although these models
are powerful, they come with increased computational complexity. With the rise of artificial
intelligence, data-driven models have emerged as a promising approach. These models use
machine learning algorithms to predict battery behaviour and performance from large
datasets, often without requiring explicit physical equations (Felix Omojola et al., 2024; Oh
et al., 2024). Each of these modelling strategies has its advantages and limitations, and their

selection depends on the specific application and required level of accuracy.

1.3.1 Electrochemical Modelling

This section focuses specifically on electrochemical modelling approaches, which describe
lithium-ion battery behaviour using governing equations for ion transport, charge transfer,
and thermodynamic processes. These models vary in their level of detail and computational
requirements, ranging from microstructure-resolved heterogeneous models (Lu et al., 2020)
to porous-electrode formulations such as the P2D framework (Doyle et al., 1993), as well as
reduced-order representations including the Single Particle Model (Haran et al., 1998) and
its variants. The following subsections provide an overview of these electrochemical

modelling categories.

1.3.1.1 Heterogeneous Models

The heterogeneous model provides a detailed and spatially resolved approach to simulating

the behaviour of lithium-ion batteries by reconstructing the actual three-dimensional (3D)



microstructure of the electrodes and electrolyte phases. This is achieved using advanced
imaging techniques such as X-ray micro-computed tomography, which enables accurate
modelling of the solid and pore domains without requiring volume-averaged parameters such

as porosity or average particle size (Lu et al., 2020).

Unlike conventional volume-averaged models, the heterogeneous model incorporates
explicit geometrical features and boundary conditions at the particle scale. This allows for a
high-resolution analysis of spatial variations in lithium concentration, current density
distribution, and local temperature gradients within the electrode. Such detail is particularly
important for analysing performance during high-rate charge/discharge cycles and for
investigating degradation phenomena at the microstructural level (Fang et al., 2020; Lu et

al., 2020).

Figure 15 Reconstructed 3D Volume of the Electrode Showing Distinct Phases in Greyscale: White Represents NMC Active
Material, Dark Grey Indicates the Carbon-Binder Domain, and Black Corresponds to the Pore Space (Lu et al., 2020).

Additionally, the model facilitates the evaluation of mechanical stresses that develop during
electrochemical cycling. These stresses originate from the non-uniform expansion and
contraction of active materials due to inhomogeneous lithiation, which may lead to cracking,
delamination, or separator deformation. This, in turn, affects both the mechanical integrity

and safety of the cell (Fang et al., 2020).

Despite its advantages, the application of heterogeneous modelling in practical battery
design remains limited by several challenges. High computational demands and the need for
high-resolution tomographic data can restrict scalability. Moreover, limitations in imaging

resolution and possible distortions during image acquisition may affect the model's accuracy.



Certain interfacial features such as contact resistance between the current collector and the
electrode coating also remain difficult to capture with current imaging techniques (Fang et

al., 2020).

1.3.1.2 Pseudo-2D (P2D) Models

The Pseudo-Two-Dimensional (P2D) model, originally developed by Doyle, Fuller, and
Newman based on concentrated solution theory, is widely regarded as one of the most
accurate and detailed electrochemical models for describing the behaviour of porous
electrode lithium-ion batteries (Doyle et al., 1993). This model has been successfully
validated across various lithium chemistries, including lithium iron phosphate (LFP), lithium
cobalt oxide (LCO), lithium nickel cobalt aluminium oxide (NCA), and lithium nickel
manganese cobalt oxide (NMC) (Haosong He, 2024).

The P2D model operates under two core assumptions: (1) the active material in the electrode
is composed of spherical particles, with lithium transport governed by solid-state diffusion;
and (2) the electrical conductivity of the current collectors is sufficiently high to neglect
variations along the transverse directions (y and z), allowing the model to focus on one-
dimensional (x-direction) dynamics for reaction and transport processes. As illustrated in
Figure 16, the model divides the battery cell into three primary domains: the negative
electrode, the electrolyte (separator), and the positive electrode. During discharge, lithium
ions de-intercalate from the solid phase in the negative porous electrode, migrate through
the electrolyte, and intercalate into the solid phase of the positive porous electrode. This

process reverses during charging (Kemper et al., 2015).
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Figure 16 Pseudo-Two-Dimensional Model During the Charge and Discharge Process (Al-Gabalawy et al., 2020).

Despite its high accuracy, the full-order P2D model involves many nonlinear partial
differential equations (PDEs), which require numerical solutions due to the lack of analytical
ones, resulting in high computational costs (S. Han et al., 2021). This makes it impractical
for simulating thermal and electrochemical behaviour under varying duty cycles in real-time
applications, particularly in battery thermal management system (BTMS) design for electric
vehicles (EVs) (Cheng, 2019). Although some studies have developed reduced-order P2D
models to improve computational efficiency (C. Li et al., 2021)(Li et al., 2021), the inclusion
of detailed internal phenomena such as current distribution often adds limited value for
thermal analysis at the module level (Kantharaj & Marconnet, 2019). As a result, the P2D
model may be considered overly complex for large-scale thermal modelling in EV

applications.

1.3.1.3 Single Particle Models (SPM)

To reduce the complexity of the P2D model, (Haran et al., 1998 proposed the single particle
model (SPM), which assumes that each electrode in a cell can be represented by a single,
uniformly sized spherical particle (see Figure 17). This simplification is valid under the
condition of uniform current distribution across both electrodes. The model neglects spatial

variations in concentration and potential within the electrolyte phase, replacing them with a



lumped solution resistance term. Consequently, the electrolyte phase is excluded from the
model, and lithium concentration within the solid phase is described using a second-order
polynomial. This approach significantly improves computational efficiency while
maintaining acceptable accuracy under 1C operating conditions. To enhance the model’s
realism, Guo et al., 2011 incorporated temperature dependence into the original SPM. Their
results showed strong agreement with experimental voltage data for lithium-ion pouch cells

discharged at rates of 0.03C, 0.5C, and 1C across a temperature range of 15 °C to 45 °C.
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Figure 17 Simplified Concept of the Single Particle Model (SPM), Representing Each Electrode as a Single Spherical
Particle (Zhang et al., 2020).

However, the assumptions of the SPM break down at high C-rates (i.e., >1C), where
concentration gradients in the electrolyte phase become significant (Guo et al., 2011). This
leads to over 10% error in voltage predictions and a comparable discrepancy in heat
generation estimation (Khaleghi Rahimian et al., 2013). Consequently, the SPM becomes
inadequate for accurate heat generation prediction under full-range EV operating conditions,

limiting its suitability for BTMS design.
1.3.1.4 Lumped Single Particle Models

To address the limitations of the SPM at higher C-rates, (Ekstrom et al., 2018) introduced
the Lumped Single Particle Model (LSPM), which simplifies the SPM by assuming that only
one electrode contributes significantly to diffusion-related voltage losses. This approach
reduces model complexity, lowering the number of required parameters to approximately
10, compared to 22 and 40 for the SPM and P2D models, respectively. The LSPM improves

accuracy under >1C conditions by fitting three key electrochemical parameters ohmic



overpotential at 1C (Mohm,1¢), dimensionless charge exchange current (J,), and diffusion time
constant () to experimental data using the Levenberg—Marquardt algorithm (Ekstrém et al.,
2018). The non-destructive nature of the data acquisition process makes the model suitable
for EV applications (Ng et al., 2020). Voltage prediction errors remained within 12 mV
under dynamic drive cycles up to £10C (Ekstrom et al., 2018), and under low C-rates (e.g.,
0.3C), discrepancies were less than 7 mV (Ng et al., 2020). These benefits have led to

increasing adoption of LSPM in thermal modelling studies.

1.3.2 Equivalent Circuits Models (ECM)

The Equivalent Circuit Model (ECM) is an empirical model developed based on
experimental data. It typically consists of a series resistor and one or more parallel resistor-
capacitor (RC) networks, as shown in Figure 18 The resistor Ro represents the internal ohmic
resistance of the battery cell, while the RC networks capture dynamic electrochemical
phenomena such as double-layer capacitance, charge transfer, and mass transport effects
(Ding et al., 2019). Due to its simplicity and low computational demand, the ECM is widely
employed in battery management systems (BMS) for estimating the state of charge (SOC)
and state of health (SOH) (M. K. Tran, Mathew, et al., 2021). However, unlike physics-
based electrochemical models, the ECM provides no direct insights into the internal
physicochemical processes of the cell. Its parameters (e.g., resistors and capacitors) are
generally extracted using hybrid pulse power characterization (HPPC) tests under isothermal
conditions at varying SOC levels. In practice, however, electric vehicle (EV) batteries
operate across a broad temperature spectrum, limiting the ECM's effectiveness in predicting
thermal behaviour for battery thermal management system (BTMS) applications (M. K.
Tran, Mathew, et al., 2021). Furthermore, achieving high accuracy with ECM requires
extensive datasets, which becomes particularly challenging for aging studies, where
parameter recalibration is frequently needed to reflect the evolving battery characteristics

(Teliz et al., 2022).
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Figure 18 Schematic of an Equivalent Circuit Model (ECM) with multiple RC parallel networks (n-RC)(Ding et al., 2019)

1.3.3 Machine Learning

Artificial intelligence (AI) has emerged as a powerful approach for modelling and simulating
lithium-ion batteries, offering high prediction accuracy and reduced computational cost
compared to traditional physics-based models. Al-driven techniques, particularly those
based on machine learning (ML), can learn complex relationships from large datasets,
enabling accurate predictions of state of charge (SOC), state of health (SOH), voltage
response, internal temperature, and capacity degradation without requiring detailed
electrochemical equations. Models such as artificial neural networks (ANNs), support vector
machines (SVMs), and deep learning architectures have been successfully applied to forecast
battery behaviour under diverse operational conditions. These data-driven methods are
especially beneficial for real-time implementation in battery management systems (BMS),
where they facilitate fast decision-making to enhance battery safety, efficiency, and lifespan.
Furthermore, hybrid approaches that integrate physics-based understanding with Al
techniques, known as physics-informed machine learning, are gaining attention for
combining interpretability with predictive performance. Thus, AI modelling presents a
promising path for advancing battery simulation, particularly when conventional modelling
is limited by computational burden or incomplete knowledge of material parameters (Felix

Omojola et al., 2024).



Elcctric vehicle

Temperature Artificial

Intelligence and
Control systems

Voltage

Current

Discharging of the e
batte Communication and
i Networking
I Cell balancing

Figure 19 Battery Energy Management and Control Framework for EV Applications (Cavus et al., 2025).

2 Thermal Modelling

Battery modelling approaches can be applied at different levels of abstraction, ranging from
module and pack configurations down to the electrochemical processes within a single cell.
Since the thermal behaviour of the overall system originates from cell-level phenomena such
as reaction kinetics, transport processes, and local heat generation, cell modelling provides

the necessary foundation for accurate thermal simulations (Cheng, 2019; S. Han et al., 2021).

2.1 Cell Modelling

Within cell modelling, heat generation plays a central role because it directly links the
electrochemical processes to the resulting thermal response. Understanding how reversible
and irreversible sources of heat arise is therefore a prerequisite for predicting temperature
evolution and designing effective thermal management strategies (Jindal et al., 2022; Nazari

& Farhad, 2017).



2.1.1 Heat Generation in LIBs

The thermal response of lithium-ion batteries is a critical factor influencing their
performance, safety, and lifespan. The heat generated inside a battery during operation
originates from two primary sources: reversible and irreversible heat. The reversible heat is

associated with the entropy change of the electrochemical reactions and can be either

endothermic or exothermic, depending on the sign of the entropy coefficient (ag%), where
U,¢v 18 the open-circuit voltage. It is given by:
ou (1)
Qrev = I Tﬁ

where I denotes the current, and T is the cell temperature (K). On the other hand, irreversible
heat arises from ohmic losses and polarization effects within the cell, mainly due to internal
resistance to ion and electron transport. The total irreversible heat generation can be

represented as:

Qirr = I’R (2)
where R denotes the total internal resistance of the cell (€2). This includes ohmic, charge-
transfer, and mass transport resistances, which collectively contribute to polarization as
shown in Figure 20. Polarization leads to a voltage deviation from the equilibrium potential
during operation, further increasing heat generation under high current loads(Nazari &
Farhad, 2017). The total heat generation rate in the cell, often referred to as the Bernardi

equation, combines these components:

aLIOCU (3)
oT

Here, V is the terminal voltage (V) and U,., is open circuit voltage (V), which represents

Qtotar = I(V - Uocv) = IT

the equilibrium potential of the cell under no-load conditions. The first term represents
polarization heat, while the second term captures entropy-related heat effects. This equation
is widely used in thermal modelling of batteries, providing a reliable basis for designing

BTMS (Jindal et al., 2022).
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Figure 20 Illustration of the model structure and heat generation sources in lithium-ion batteries (Nazari & Farhad,
2017).

2.1.2 Heat Transfer in LIBs

LIBs are complex, heterogeneous systems in which electrochemical and thermal phenomena
are strongly coupled. When considering heat transfer within these systems, the three primary
mechanisms, conduction, convection, and radiation must be evaluated. Given the internal
structure of LIBs, which predominantly consists of solid—solid and solid—liquid interfaces,

heat conduction serves as the principal mode of internal heat transfer (Sun et al., 2025).

If significant temperature gradients are anticipated within the lithium-ion cell, thermal
modelling typically employs a form of the three-dimensional heat conduction equation, as
shown in Equation (4). This approach is particularly relevant for scenarios such as safety
simulations, pre-heating studies, and fast-charging investigations. In this context, the thermal
conductivity directly influences the spatial and temporal distribution of the cell temperature,
T, which is a function of both position (x,y,z) and time t. Due to the layered structure of
the electrode and separator stack, lithium-ion batteries exhibit anisotropic thermal
conductivity, with distinct values in each Cartesian direction (ky,ky,k;). Although

Equation (4) is typically expressed in Cartesian coordinates, it can also be formulated in



cylindrical coordinates (7,z,¢), which is often more appropriate for cylindrical cell

geometries (Steinhardt et al., 2022).

CaT_ a<k aT)+a(k 6T)+6<k 6T)+ " 4)
Porar = ax\ 5 ) T ay\v g ) T 5,z 5 ) T 4

where p is the average density of the battery, C,, is the average specific heat capacity, """ is

the volumetric heat generation rate.

If internal temperature gradients within the cell are negligible, typically indicated by a low
Biot number, the lumped capacitance model, as presented in Equation (5), provides a suitable
approach for modelling the cell temperature. In this simplified model, the temperature rise
of the cell is primarily governed by its specific heat capacity and the heat dissipation, which
together determine the amount of energy required to alter the cell’s temperature (Steinhardt
et al., 2022).

aT 1244 (5)
chelle E = q Vel — Qaiss

Qaiss = Gconv T Qraa (6)
where the q4;5s 1s heat dissipation that is combination of convection and radiation heat
transfer and V,,;; is the volume of the cell. Thermal convection and radiation are considered

at the free boundary, as expressed in Equations (7) and (8).

Figure 21 Illustration of Two Primary Heat Dissipation Mechanisms in a Battery Cell: Natural Convection and Thermal
Radiation (Kovdcs et al., 2025).



Geonv = hA(T — Tp) (7)
Qrad = SG(T4 - T(f) (8)

where h is the natural convective heat transfer coefficient, T represents the surface boundary
temperature, T, is the ambient temperature, € denotes the surface emissivity, and o is the

Stefan—Boltzmann constant.

Natural convective heat transfer between the battery and the external environment occurs
through the relative motion of a fluid, typically air or liquid, across the battery surface. This
passive method of thermal dissipation is employed in large scale energy storage systems.
The effectiveness of natural convection is influenced by several factors, including fluid
velocity, temperature gradients, and thermophysical properties such as density, specific heat

capacity, and thermal conductivity (Sun et al., 2025).

When a fluid flows over a heated battery surface, higher flow velocities enhance heat
removal. At a constant flow rate, a lower fluid temperature increases the temperature
difference between the surface and the fluid, thereby improving convective heat transfer.
Fluids with high specific heat capacity can absorb more heat, while those with high thermal
conductivity are more effective in transporting it away from the surface (J. W. Han et al.,

2022).

In addition to convection, thermal radiation also plays a role in heat dissipation, especially
at higher operating temperatures. Radiation is a form of energy transfer that does not require
a medium and occurs through electromagnetic waves emitted from the battery surface. The
net radiative heat transfer depends on surface emissivity, surface temperature, and ambient
temperature. Although radiation is generally less dominant compared to conduction and
convection in lithium-ion batteries, its contribution becomes more significant at elevated
temperatures due to its proportionality to the fourth power of temperature (Hatchard et al.,

2000).

Convection can be further classified into natural and forced types, as illustrated in the Figure
22 . Natural convection arises from buoyancy effects driven by density differences in the
fluid, while forced convection is induced by external means such as fans or pumps.
Compared to forced convection, natural convection typically exhibits lower heat transfer

rates and limited temperature control (Sun et al., 2025).
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Figure 22 lllustration of (a) Forced Convection and (b) Natural Convection Mechanisms.

2.1.3 Previous works on Cell Modelling

The first comprehensive formulation for quantifying heat generation in electrochemical
systems was presented by (Bernardi et al., 1985), who derived a general energy balance
equation that accounted for reversible, irreversible, and mixing heat contributions within a
unified thermodynamic framework. This model provided the theoretical foundation for
analysing the thermal behaviour of batteries and continues to underpin contemporary electro-
thermal modelling approaches. Subsequently, (Doyle et al., 1993) extended this concept by
developing the first pseudo-two-dimensional (P2D) electrochemical model for lithium-ion
polymer cells. Their model coupled charge, mass, and energy conservation to predict spatial
variations in potential, concentration, and temperature during galvanostatic cycling.
Collectively, these pioneering works established the fundamental framework for integrated
electrochemical-thermal modelling and have remained the cornerstone for subsequent
advancements in battery system analysis. Building upon these foundational studies, a range
of recent investigations have advanced battery thermal and electrochemical modelling
through experimental validation and multi-dimensional simulation approaches. A summary

of these representative studies is presented in Table 1, highlighting their key findings.



Table 1 Recent Studies on Thermal and Electrochemical Simulation of Lithium-lon Cells.

Serial
no.

Author

Battery
Type

Key Findings

(Paccha-
Herrera et
al., 2020)

Cylindrical
26650 cell,
LCO

Compared three thermal modeling approaches
under constant and dynamic discharges. All models
agreed with experiments (max error =~ 1.3 °C at
1.5C). Lumped model provided reliable results with
minimal computational cost, while coupled
electrochemical-thermal model captured voltage
and temperature fields most accurately.

(Al Hallaj et
al., 1999)

Cylindrical
18650,
LCO

Developed and validated a 1D transient thermal
model for Sony 18650 Li-ion cells using
calorimetric data. The model accurately predicted
temperature evolution at moderate C-rates and
demonstrated a strong dependence of temperature
rise on cooling rate. Thermal runaway was
observed between 104—144 °C depending on state
of charge, defining safety thresholds for larger-scale
cell designs.

(U. Han &
Lee, 2022)

Cylindrical
21700,
NMC

The proposed inverse heat transfer analysis (IHTA)
method was validated under discharge rates ranging
from 0.25C to 2.0C, demonstrating excellent
agreement with experimental data (=~1% error) and
confirming its reliability in predicting temperature
evolution across varying load conditions.

(Bahiraei et
al., 2017)

Prismatic
Cell, NCA

Developed a pseudo-3D electrochemical-thermal
model coupling 1D electrochemical and 3D heat
transfer equations to simulate temperature evolution
in an NCA prismatic cell. The model accurately
predicted cell temperature within 4% deviation
from experiments and demonstrated increasing
temperature with discharge rate, reaching 39.7 °C at
3C under safe operating limits.

(Xie et al.,
2018)

Pouch
Single
Cell, LTO

A combined experimental and analytical study
developed a transient heat-generation model under
air cooling. Higher C-rates and lower ambient
temperatures increased heat generation and
temperature rise. The model accurately predicted
cell temperature (with less than 2% error),
confirming discharge produced more heat than
charge and overdischarge caused sharp temperature
rise.




Table 1 Continued.

Conducted charge—discharge experiments at 1C-2C
comparing natural convection, PCM, and PCM-fin

Cylindrical . .
y118n6 Srz)ca cooling. PCM cooling reduced NMC cell
(M. Chen et cells temperature by 4.7 °C at 1C and 12.8 °C at 2C,
al., 2020) ’ while LFP cells showed smaller drops
NMC and ) .
LFP (approximately 2 °C). The method effectively
stabilized temperature and preserved capacity under
higher C-rates.
Measured anisotropic thermal conductivity and heat
capacity, then established a 2D axisymmetric
thermal model using HPPC-derived resistance and
Cylindrical | entropy data. The model accurately predicted core
(Q. Wuet . o
al., 2023) 21700, and surface temperatures (with less than 1.5 °C
N NCA deviation) under 1C-2C discharge. Core
temperature reached 60 °C at 2C with
approximately 3 °C internal gradient, validating the
model’s reliability for real-cell thermal behavior.
Developed a coupled electrochemical-thermal
model combining porous-electrode and transient
. heat-transfer formulations to predict temperature
Cylindrical )
evolution of a cell. The model accurately
(Jeon, 2014) 18650, : . :
reproduced experimental trends, showing higher
LCO . .
discharge temperatures (approximately 50 °C at 2C)
and a transition from entropic to Joule-dominated
heating with increasing C-rate.
Developed a lumped thermal characteristic model
coupled with the Bernardi equation to estimate
internal temperature online. Introduced an adaptive
forgetting-factor recursive least squares — joint
(Shi et al Cylindrical Kalman filter for co-estimation of internal
2022) N 18650, temperature and external thermal resistance.
LFP Experimental validation under HPPC, Beijing bus

dynamic stress test BBDST, and full-cycle tests
showed high accuracy with a maximum RMSE of
0.53 °C, confirming robustness for real-time battery
management applications.




Table 1 Continued.

10

(Ozdemir et
al., 2021)

Cylindrical
18650,
NCA

A coupled electrochemical-thermal model was
developed to solve mass, charge, and heat-transfer
equations incorporating a variable convective
coefficient. Experimental validation under 0.5C—
1.5C discharges demonstrated excellent agreement
with measured data (with less than 1 °C and 0.11 V
RMSE). The model effectively captured mandrel-
induced temperature gradients while confirming
nearly uniform thermal behavior at low C-rates.

11

(Mevawalla
et al., 2020)

pouch cell,
LFP

A pseudo-three-dimensional electrochemical—
thermal model was developed by coupling one-
dimensional electrochemical and three-dimensional
heat-transfer equations to simulate a 5 Ah NCA
prismatic pouch cell. The model demonstrated
strong agreement with experimental data (with less
than 4 % deviation) and accurately captured the
temperature rise with increasing discharge rate,
reaching 39.7 °C at 3C while remaining within the
safe operational range.

12

(Abbas et
al., 2024)

Pouch cell,
NMC

A three-dimensional lumped thermal model based
on a resistance-network approach was developed
and validated against a detailed finite-element
model for a single NMC pouch cell. The model
accurately reproduced both transient and steady-
state temperature evolution under 1C-5C
discharges, achieving less than 0.5 °C deviation
from FEM predictions while reducing
computational time from six hours to approximately
three seconds.

2.2 Battery Module Modelling

A lithium-ion battery module is an assembly of interconnected cells configured to deliver
higher voltage and capacity than a single cell. Modules are typically designed with integrated
thermal management features to maintain the temperature within safe operational limits,
thereby enhancing reliability and safety. In addition, BMSs are often incorporated at the

module level to monitor parameters such as cell voltage and temperature, enabling active



balancing and performance optimization. This not only improves overall system efficiency

but also contributes to prolonging the battery's service life (Shinde et al., 2023).

Figure 23 Battery Module Configured in a 3P4S Arrangement(Avik, 2024).

2.2.1 Previous works on Module Modelling

The earliest systematic investigations into battery pack thermal behaviour were conducted
at the national renewable energy laboratory (NREL) in the late 1990s. (Pesaran & Burch,
1997) made a pioneering contribution by presenting one of the first comprehensive analyses
of the thermal performance of EV and HEV battery modules and packs. Their work
combined fundamental heat transfer modelling with finite element simulations to assess
temperature evolution within lead—acid modules and across multi-module pack assemblies.
The study demonstrated how internal heat generation, module geometry, airflow
configuration, and casing thermal conductivity influence temperature gradients at the pack
level. Importantly, it highlighted that inadequate thermal design can lead to temperature non-
uniformity, accelerated aging, and electrical imbalance among cells and modules,

emphasizing the necessity of dedicated battery thermal management systems.

Building on this foundation, (Pesaran, 2002) introduced one of the earliest lumped-
capacitance thermal models for battery pack analysis within NREL’s ADVISOR vehicle
simulation platform. This work enabled prediction of battery temperature evolution under
realistic drive-cycle conditions and linked thermal behaviour to electrochemical

performance indicators such as internal resistance, available power, and efficiency.



Additionally, 2D and 3D finite element analyses were used to explore pack-level airflow
configurations, revealing that parallel airflow architectures offer markedly improved
temperature uniformity compared to series configurations. Collectively, these studies laid

the groundwork for modern approaches to battery pack thermal modelling.

Table 2 summarises recent studies on lithium-ion battery pack modelling, highlighting the

cell chemistries employed and the key findings of each work.

Table 2 Recent Studies on Thermal and Electrochemical Modelling of Lithium-lon Battery Module.

ial Batt
Seria Author attery

o Type Key Findings

Using a thermoelectric coupling model, the
study analyzed airflow direction, intake
velocity, and cell arrangement in a six-cell
prismatic LFP pack. Aligning airflow with cell

(Wang et al., 6 length improved cooling, while staggered

2025) Prismatic arrangements reduced local hotspots. An

cells, LFP optimal configuration (10 mm staggered
distance, 5 mm spacing) lowered maximum
temperature by 0.5% and temperature
difference by 4.2%, demonstrating enhanced
cooling and improved uniformity.

Proposed a low-computational 3D lumped
thermal model that captures thermal
interactions between cells, tabs, and insulation
layers. The model closely matched FEM

10 Pouch predictions with a maximum deviation of
cells, approximately 0.42 °C while reducing
NMC computational time from 21 h (FEM) to 6 s for

a 10-cell module. Results demonstrated

(Abbas et al.,
2024)

accurate temperature prediction for both single-
cell and multi-cell modules across discharge
and periodic cycling conditions.




Table 2 Continued.

Developed a 3D electrochemical-thermal
model using the P2D framework to evaluate
heat generation, dissipation, and life span of a
6s2p pack with multiple cathode chemistries

. ) ) 12 . under air cooling. The NMC pack achieved the
(Mangaiyarkarasi | cylindrical o . .
& Jayaganthan, cells of best thermal stability with ail Optlmél
2024) 21700, tempera‘ltu're ra‘mge of 21.3-32.8 °C, maximum
NMC heat dissipation of 102.5 W, and SOC/SOH
retention of 100%/80%. Despite faster capacity
fade, NMC chemistry provided superior heat
management and operational efficiency
compared with LCO, LFP, and LMO systems.
Conducted experimental and numerical
evaluation of a liquid-cooled 4S4P NMC pack
16 under 1C—4C discharges. The system
o maintained cell temperatures below 40 °C, and
(J. W. Han et al., cylnllldru;al the chiller-assisted configuration improved
2022) (;Z 6558 temperature uniformity by up to 35%. Model-
NM C’ experiment agreement was within 2 K,
confirming the accuracy of the thermal
predictions and the effectiveness of the pack’s
symmetrical cooling design.
Developed a Thevenin-based equivalent circuit
model that incorporates the effects of state of
charge, state of health, and temperature on
(M. K. Tran model parameters. Experimental validation
Mathew. et a{. 5 pouch demonstrated an RMSE below 20 mV and a
20 2’1) > | cells, LFP MAPE below 0.5%, representing
approximately a 50% improvement in voltage
prediction accuracy compared to conventional
models and confirming its suitability for real-
time battery management applications
Compared air and PCM cooling under an HEV
load profile. Air cooling kept temperatures
16 within safe limits but showed higher non-
(F. Chen et al. cylindrical uniformity, whereas PCM cooling achieved
2020) ’ cells of excellent uniformity (AT < 0.4 °C) but
26650, increased mean temperature and reduced cycle
LFP life. Overall, air cooling was found to be more

cost-effective and durable when considering
thermal performance and ageing.




Table 2 Continued.

(K. Lietal.,
2018)

16

cells of
18650,
NMC

cylindrical

Demonstrated that water-pipe cooling
significantly improves pack thermal behavior
under dynamic CC-CV cycling. Simulation
closely matched experiments, with deviations
mainly attributed to constant thermo-physical
parameters and neglected contact resistance.
Water cooling maintained safe temperatures at
low C-rates, while PCM became more effective
at high C-rates. Results indicate that a hybrid
PCM-water system offers optimal performance
across varying load conditions.

(Yang et al.,
2015)

60
cylindrical
cells of
18650,
LFP

Developed and validated a coupled
electrochemical—thermal model to investigate
forced air-cooling in aligned and staggered
cylindrical-cell packs. Results showed that
increasing longitudinal spacing reduced
maximum temperature but increased power
demand, while larger transverse spacing
improved uniformity but raised average
temperature. The optimized aligned
configuration (Sx = 34 mm, Sy = 32 mm)
achieved balanced cooling performance with
minimal temperature non-uniformity.

(Jaguemont et
al., 2016)

4
Prismatic
cells, LFP

Developed a coupled electro-thermal model for
prismatic LFP cells and a 4-cell pack, validated
from —20 °C to 25 °C with approximately 3%
error. The model accurately captured voltage
behavior, energy loss, and self-heating at low
temperatures, and reproduced pack-level non-
uniformity with higher temperatures in inner
cells.

10

(Basu et al.,
2016)

30
cylindrical
cells of
18650,
NCA

Developed a 3D coupled electrochemical—
thermal model for a liquid-cooled 6S5P NCA
pack. Experimental validation showed
approximately 90% accuracy with less than 1 K
deviation, while the proposed design
maintained temperature rise below 7 K at 2.7C,
ensuring compactness and high thermal

uniformity.




3 Characterization Methods

In this master’s thesis, the experimental investigations were carried out on a commercial
cylindrical lithtum-ion cell in the 21700 format with NCA chemistry and a nominal capacity
of 4.5 Ah. The key specifications of the cell are listed in Table 3. Further analysis of the cell
required measurement of the open circuit voltage and the implementation of charge—
discharge cycling under controlled loading conditions, which will be presented in the

following sections.

To perform the experimental measurements, a Neware battery cycler Model BTS-4000 was
used. A battery cycler is an essential instrument that enables the controlled application of
current and the simultaneous measurement of voltage in electrochemical cells. In practice,
the cycler allows the operator to define charging and discharging protocol, apply the required
current with high precision, and continuously record the corresponding voltage response of
the cell. In addition, the cycler actively monitors both current and voltage in real time,

ensuring accurate execution of test profiles and reliable data acquisition.

Table 3 Technical Specifications of the Lithium-lon Cells Used in This Study

No. Particulars Values
1 Brand Name Molicel
Model Name INR-21700-P45B
3 Capacity (Typical) 4500 mAh
3.6 V (Nominal)
4 Cell Voltage 4.2 'V (Charge)
2.5 V (Discharge)
5 Charge Current 4.5 A (Stan'dard)
13.5 A (Maximum)
6 Discharge Current 45 A (Continuous)
7 Operating Temperature 0°C to 60°C (Charge)
-40°C to 60°C (Discharge)
8 Shape Cylindrical
Diameter 21.55 mm
10 Height 70.15 mm
11 Weight 70 g

In this work, the Neware BTS-4000 was employed to conduct both OCV characterization

and dynamic cycling tests.



Figure 24 Single-cell testing was conducted using the Neware battery cycler(Avik, 2024).

3.1 Open Circuit Voltage (OCV) Measurements

The OCV of a cell is a static function of its state of charge (SOC) and temperature, whereas
most other aspects of cell performance are dynamic in nature. Therefore, separate
experiments are required to characterize the OCV—SOC relationship and the cell’s dynamic
behaviour. To determine the OCV profile, the general procedure is as follows: the cell is first
fully charged, then discharged at a very low current to the minimum operating voltage while
continuously monitoring both the terminal voltage and the cumulative ampere-hours
discharged. Subsequently, the cell is recharged, again at a very low current, to its maximum
operating voltage, with voltage and charge data recorded throughout the process. This slow
charge—discharge cycle ensures that the voltage approximates the true equilibrium OCV at

each SOC point (Plett, 2015).

The slow charge—discharge rate is intended to minimize excitation of the cell’s dynamic
behaviour and maintain a quasi-equilibrium state throughout the test. While a C/30 rate is
commonly used as a compromise between equilibrium accuracy and test duration, a C/50
rate was employed in this study to further reduce transient effects (Petzl & Danzer, 2013).

Based on Figure 18, the terminal voltage can be expressed as Equation (9),

U, = Ryl + Z Rlexp(—t/t) + U,y ©)
i

Here, R, represents the ohmic resistance, and t is the time constant defined as the product
of resistance and capacitance in the equivalent RC circuit. Therefore, by reducing the

current, the first two terms on the right-hand side of Equation (9) can be neglected.



OCV profiles obtained during charging and discharging differ due to voltage hysteresis,
which arises from thermodynamic asymmetry, kinetic polarization, and structural changes
in the electrode materials. As a result, the OCV is not a single-valued function of the SOC,
with the charging OCV typically appearing higher than the discharging OCV at the same
SOC. To maintain consistency in modelling, an averaged OCV-SOC curve is commonly
used to suppress hysteresis-related variations and provide a smooth, single-valued
relationship suitable for equivalent-circuit and electrochemical models (Barai et al., 2015;

H. Feng et al., 2021).

To obtain a unified OCV curve from both charging and discharging data, two methods were
employed. The first is the conventional approach, referred to as the averaged-OCV at
constant-SOC method (Bussios et al., 2024). As illustrated in Figure 25, this method requires
averaging between points B and C, which represent the OCV values from the discharge and
charge cycles, respectively. The second approach, known as the averaged-SOC at constant-
OCV method (Ning & Zhang, 2015), involves averaging between points A and B, which

correspond to the SOC values from the charge and discharge cycles, respectively.

3.5

Discharge

Figure 25 Schematic Representation of OCV Calculation Using Two Different Methods.

As previously noted, the OCV is also a function of temperature, and in Section 2.1.1 , we
introduced the concept of reversible (entropic) heat. To evaluate the entropic heat coefficient
in a lithium-ion battery, charge and discharge experiments were conducted at different
temperatures using a low current rate of C/50 (Hua et al., 2023). The slope of this linear fit

at each SOC point corresponds to the entropic heat coefficient which quantifies the reversible



heat contribution. This analysis was repeated for multiple SOC levels to obtain a full profile

of the entropic heat coefficient as a function of SOC.

For this experimental procedure, a Gamry Reference 3000 potentiostat was employed to
precisely regulate the applied current and voltage throughout the measurements. In parallel,
a Weiss climate chamber was utilized to ensure a stable and well-controlled ambient
temperature, thereby minimizing external thermal disturbances and enabling consistent test

conditions.

3.2 Cycling

The looped cyclic charge and discharge test was conducted using the Neware BTS 8.0. The
cells were cycled using a constant current—constant voltage (CC—CV) charging protocol
followed by a constant current (CC) discharging protocol at various C-rates. After each
charge and discharge step, a 30-minute rest period was implemented to allow the cell’s
voltage and temperature to stabilize before proceeding to the next cycle. The temperature of
each cell during cycling was measured using a PT100 sensor, which provides an accuracy in
the range of £0.1 to £0.3 °C (Kako, 2023). To verify the thermal model under different
operating conditions, three C-rates were selected. A 0.5C rate represents mild cycling with
limited heat generation, serving as a baseline for model accuracy under low-stress
conditions. The 1C rate corresponds to nominal operation, often used as a benchmark in both
experiments and simulations. Finally, the 2C rate reflects an extreme scenario with
significantly higher heat generation and thermal gradients, testing the robustness of the
model under aggressive cycling. This range of C-rates is commonly adopted in battery
studies to cover realistic usage as well as worst-case conditions (Kako, 2023; Patel et al.,

2025). A comprehensive summary of the cycling parameters is presented in Table 4.



Table 4 Cycling Protocol for Different C-rates

C-rate
0.5C 1C 2C
Parameters
Charging Current (A) 2.25 4.5 9
Charging Voltage cut-off (V) 4.2 4.2 42
Charge Current Cut-off after CV 50 50 50
charge (mA)
Rest Period (s) 1800 1800 1800
Discharge Current (A) -2.25 -4.5 -9
Discharge Voltage Cut-off (V) 3.0 3.0 3.0
Rest Period (s) 1800 1800 1800
Number of Cycles tested 2 2 2

3.3 Heat Transfer Coefficient Measurement

To characterize the overall heat transfer coefficient h of the battery cell, a dedicated cooling
experiment was conducted. Estimating h through empirical correlations was considered
impractical, as convective and radiative heat losses are influenced by various factors,
including ambient temperature, airflow conditions, cell geometry, and surface properties that
are difficult to capture accurately with standard models. Instead, h was determined by
analyzing the battery’s cooling behaviour following a charge cycle. In the experiment, the
cell was charged using CC charging and then left to cool in a quiescent environment.
Throughout this cooling period, two thermocouples were used to continuously monitor the
ambient air temperature, while a third thermocouple, affixed to the cell surface using thermal
paste to ensure good thermal contact, measured the cell temperature. This setup ensured that
the recorded temperature decay was predominantly governed by natural convection and
radiation to the surroundings, allowing for a reliable estimation of the overall heat transfer

coefficient (U. Han & Lee, 2022).



During the rest period, when no electrochemical reactions take place, the thermal behaviour
of the cell can be described by a simplified energy balance. The general form of the energy
conservation equation for the cell is given in Equation (5). Once the discharge ends, the
volumetric heat generation term becomes negligible, and the temperature decay is governed
solely by heat dissipation. This heat loss is modelled using Newton’s law of cooling,
incorporating convection as expressed in Equations (6)-(8). Substituting these terms into the
energy balance yields a first-order differential equation that describes the cell temperature T

during the cooling phase.
(10)

aT
chelle E

This differential equation describes how the cell temperature decays toward the ambient

= —hA(T - T,)

temperature due to heat loss. All quantities in Equation (10) are known or measurable except
for h, which must be determined. The cell’s mass was known, and area was calculated from
the cell geometry and the value for specific heat was taken from (Murashko et al., 2020).
Thus, h was treated as an unknown parameter to be extracted from the cooling data. To
estimate h,an inverse heat transfer analysis was carried out by fitting the model to the
measured cooling curve. By manipulating the governing equations, the following expression

is obtained:

t
To— T = (Tyo— To)e = (D
__mG, (12)
hA

where 7 is the time constant and T, o and T ambient and cell temperature, respectively.

3.4 Calorimetric Cycling Experiments

An isothermal calorimeter was used to precisely measure the total heat generation of the
lithtum-ion cell during charge—discharge cycling. This method allows direct quantification
of both reversible and irreversible heat, ensuring accurate evaluation of the cell’s thermal
behaviour. As shown by (Nazari & Farhad, 2017), conducting measurements under constant
temperature conditions using an isothermal calorimeter minimizes external temperature
effects and provides reliable data for validating thermal models and improving battery

thermal management systems.



The calorimetric cycling experiments were conducted using a Thermal Hazard Technology
(THT) IBC-PL Isothermal Battery Calorimeter, integrated with a Huber MPC Minichiller
600 temperature control unit. The IBC-PL is specifically designed to study the thermal
behaviour of pouch and prismatic lithium-ion cells under strictly controlled isothermal
conditions. The calorimeter quantifies the heat generated by the cell through precise
measurement of the temperature differential between two parallel plates, one fixed and one
adjustable, thermally connected to a heat-sink block via a calibrated thermal resistance plate.
The heat produced by the cell induces a proportional temperature difference across these

plates, which is continuously monitored to calculate the corresponding heat flow.

A Huber Minichiller 600 circulated thermostated fluid through the calorimeter jacket to
maintain the chamber temperature at a fixed set point of 30 °C, ensuring stable isothermal
operation as described in the manufacturer’s documentation. The cell was positioned
centrally between the measurement plates, and good thermal contact was ensured using the

recommended clamping procedure and a thin thermal interface layer.

To perform the charge—discharge cycling, a Chroma 17011 battery cell tester was connected
to the calorimeter via the electrical feedthroughs provided on the instrument. The tester
supplied controlled current and voltage profiles while the calorimeter simultaneously
recorded the associated heat generation. Data acquisition was carried out using both the THT
Control Software and Battery Pro Software: the former recorded heat-flow data, whereas the
latter collected voltage, current, and cell temperature data. Figure 26 illustrates a schematic

representation of the calorimeter setup.

Isothermal
Battery |
Calorimeter
Cycler Chiller
) >

Figure 26 Schematic representation of the calorimeter setup.

This integrated setup enables accurate quantification of total, reversible, and irreversible heat

generation during dynamic cycling of pouch and prismatic lithium-ion cells under well-



defined isothermal conditions. However, the calorimeter used in this study was not originally
intended for cylindrical cells, which introduces additional uncertainty in the measurements.
The cylindrical 21700 cell establishes only a narrow line of contact with the flat calorimeter
plates, leading to higher and non-uniform thermal contact resistance; as a result, part of the
generated heat may dissipate laterally or through pathways that bypass the calibrated heat-
flux sensors. Small air gaps between the curved surface and the plates further increase
uncertainty, and although the calorimeter maintains an isothermal boundary, it cannot

compensate for these geometry-dependent deviations in heat-flux distribution.

4 Single Cell Modelling

To translate the developed single-cell thermal model into a practical simulation framework,
a computational platform was required that could efficiently handle nonlinear, time-
dependent equations and allow for flexible integration of experimental data. MATLAB®
was selected for this purpose due to its widespread use in battery modelling, its robust
numerical solvers for differential equations, and its built-in tools for data processing and
visualization. Moreover, MATLAB enables straightforward integration of experimental
inputs such as open-circuit voltage (OCV), entropic heat coefficients, and specific heat
capacity into the model, while providing flexibility to test different boundary conditions and
cycling profiles. These capabilities make MATLAB an appropriate choice for implementing
the thermal model, ensuring both computational efficiency and reproducibility of results (Y.

Liu, 2025).

4.1 MATLAB Implementation

The single-cell thermal model was implemented in MATLAB® R2024b to simulate the
temperature evolution of the lithium-ion cell during charge and discharge cycles. The
governing equations, presented in the section 2.1 , are derived from the Bernardi equation,
which accounts for both irreversible heat generation and reversible entropic contributions,
as expressed in Equation (13). To numerically solve the coupled first-order differential
equations describing the cell’s thermal dynamics, the ode45 solver was employed. This

solver uses an adaptive Runge—Kutta method, providing an optimal balance between



computational efficiency and numerical accuracy, making it particularly suitable for

problems involving nonlinear temperature-dependent parameters (Alvarez et al., 2021).

(13)

UOC‘U

aT

The model input parameters consisted of the experimentally measured OCV, the entropic

aT 0
mcpaz(V—OCV—T )I—hA(T—Ta)
heat coefficients, and the specific heat capacity reported by (Auch et al., 2023). These
parameters were integrated into MATLAB scripts to evaluate transient thermal responses
under different C-rate profiles. Additionally, the implementation was structured to allow
flexible configuration of boundary conditions, enabling the inclusion of various convective
heat transfer coefficients and ambient temperature settings. By rearranging Equation (13),
hA can be eliminated, allowing the thermal behavior to be expressed in terms of a lumped
time constant. As discussed in Section 3.3 , this simplification enables the model to be
reformulated using the thermal time constant, 7, facilitating a more compact and practical

implementation for parameter estimation and simulation.

ancv) me
oT I — T (T - Ta)

at me

(14)

oT (V—OCV—T

The voltage, current, and temperature data are time-dependent variables. To simulate them
in MATLAB, an interpolation function was required to align the datasets with a uniform
time interval. For this purpose, the built-in one-dimensional interpolation function “interp1”

was employed.

To compare the OCV and terminal voltage by evaluating their difference, it was first
necessary to determine the SOC for each data point. The SOC was tracked using the
coulomb-counting method during both the charge and discharge cycles. Because the cells
were allowed to rest at the end of each cycle, the voltage relaxed toward equilibrium,
enabling the final SOC of each rest period to be used as the initial SOC for the subsequent
cycle. This approach ensured a consistent and accurate SOC reference throughout the entire

dataset.

I(t
SOC = S0C, +f © 4 (15)

C
Where SOCj is the initial SOC and C,, is the nominal capacity of the cell.



4.2 Error Analysis

To evaluate the accuracy of the thermal model and its agreement with the experimental
measurements, two common error metrics are used: the Root Mean Square Error (RMSE)
and the error percentage. These indicators quantify the deviation between simulated and

measured values and provide an objective measure of model performance.

4.2.1 Root Mean Square Error (RMSE)

RMSE is a widely used statistical metric that expresses the average magnitude of the error

between predicted and observed values. It is calculated as:

- (16)

1
RSME = |~ (Tyim = Toxp)?
1

Where T;p, is the simulated value, Tey,, is the corresponding experimental value, and n is

the total number of data points.

RMSE places a higher weight on larger deviations due to the squared error term, making it
sensitive to peak differences or rapid transitions in the dataset. A lower RMSE indicates

better agreement between simulation and experiment (Chai & Draxler, 2014).
4.2.2 Error Percentage

Error percentage provides a normalized measure of deviation relative to the magnitude of

the reference (experimental) value. It is often calculated using absolute error:

Tsim — T, (17)
Error(%) = (ls””T—expl> x 100
exp

This metric expresses the error in percentage terms, allowing the performance to be assessed
independently of the scale of the measured variable. It is particularly useful when comparing

different operating conditions or datasets with varying magnitudes (Kim & Kim, 2016).



5 Results

This chapter summarises the key experimental findings and modelling outcomes of this
work. It begins with the identification of parameters required for the thermal model, followed
by the characterisation of cell voltage behaviour and temperature-dependent properties. The
latter part of the chapter evaluates the model performance under different C-rate conditions
and compares the predicted heat generation with calorimetric measurements. Together, these
results provide the basis for assessing the accuracy and applicability of the developed

thermal model.

5.1 Heat Transfer Coefficient

To assess the repeatability of the measurement procedure, the experiment was performed
independently on two separate cells. As shown in Figure 27, the AT decay profiles of both
cells exhibit very similar behaviour, and the fitted exponential curves overlap closely across
the entire time range. The extracted time constant for both cells is approximately t = 500 s,
demonstrating a high level of consistency between the two measurements and confirming

the reliability of the experimental setup.
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Figure 27 Fitted Cooling Curve from Experimental Data.

5.2 Reference OCV Measurements

Figure 28 presents the OCV—-SOC relationship for both the charging and discharging paths.
A distinct voltage hysteresis is observed across most of the operating range. At low SOC,
the charging OCV is noticeably higher than the discharging OCV, with the difference
gradually diminishing toward mid-SOC. Between approximately 40-90% SOC, the two
curves nearly converge, after which a small separation becomes visible again as the cell
approaches full charge. Overall, the OCV-SOC profiles remain smooth for both directions,
with the charging trajectory consistently exhibiting slightly higher voltages than the
discharging trajectory throughout the entire SOC window.
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Figure 28 OCV as a Function of SOC for Both Charging and Discharging Processes.

Figure 29 compares the OCV—-SOC profiles obtained using the Averaged-OCV at Constant-
SOC method and the Averaged-SOC at Constant-OCV method. Both methods produce
nearly identical OCV curves, following the same smooth and monotonically increasing trend
across the entire SOC range. The two profiles overlap closely throughout most of the
window, with only minor deviations appearing at very low SOC (0-30%). These differences
remain small, and the overall shape and magnitude of the OCV-SOC relationship are
consistent between the two approaches, indicating that both methods provide a comparable

representation of the cell’s OCV—-SOC relationship.
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Figure 29 Two Different Methods for Obtaining a Unified OCV Curve.



5.3 OCV at Different Temperature Measurements

The experiments were conducted at three temperatures: 23 °C, 30 °C, and 40 °C. However,
during the OCV measurement at 30 °C, an unexpected issue occurred, rendering the
corresponding dataset unreliable for use in the simulations. As shown in Figure 30, the
measured values at 30 °C deviate markedly from the consistent trends observed at 23 °C and

40 °C.
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Figure 30 Comparison of OCV-SOC Curves Measured at 23 °C, 30 °C, and 40 °C.

5.4 Entropic Heat Coefficient

Figure 31 presents the entropic heat coefficient (EHC) as a function of SOC for both the
charging and discharging paths, including the experimentally measured curves and the
reference data extracted from (Friedrich et al., 2022). The experimental charging and
discharging curves show clear directional asymmetry, with the charging EHC remaining
close to zero and mostly negative across the SOC range, aside from a sharp rise at very low
SOC. In contrast, the discharging curve exhibits a much wider variation, reaching more
negative values at low SOC, becoming positive between roughly 40-90% SOC, and showing
a steep increase near full charge. Overall, the discharging path displays consistently larger

absolute values, and the two experimental profiles do not overlap. The reference curves from



Friedrich show significantly smaller magnitudes and smoother behaviour, remaining mostly

negative and only becoming slightly positive at high SOC.

3.3 ——— Charging EHC Discharging EHC

58 Charging EHC Ref - — —Discharging EHC Ref

EHC(mV/K)

SOoC

Figure 31 Charging vs. discharging entropic heat coefficient (EHC), including experimentally measured data and
reference EHC from (Friedrich et al., 2022).

The entropic heat coefficient (EHC) represents the reversible heat exchange associated with
lithium intercalation and deintercalation. In a fully reversible electrochemical system, the
EHC profiles obtained during charging and discharging would be identical, as the underlying
entropy change is thermodynamically the same in both directions. However, numerous
studies have reported that the charge and discharge EHC curves do not coincide in practical
lithium-ion systems (Bernardi et al., 1985; Zilberman et al., 2018). This asymmetry is
typically attributed to electrode hysteresis, kinetic polarization, and path-dependent entropy
variations. These effects are especially pronounced at low and high SOC, where phase
transitions, staging phenomena, and non-ideal solid-solution behaviour occur (Assat et al.,
2019). As a result, although symmetric EHC curves would indicate perfectly reversible
thermodynamics, the asymmetry observed in the literature reflects the intrinsic irreversibility

of real lithium-ion cells.



5.5 Charge-discharge cycling

In this section, the results corresponding to the 0.5C, 1C, and 2C cycling rates are presented.
The temperature figures in this section report the temperature rise (AT), whereas the absolute

temperature profiles for each operating condition are provided in Appendix 1.

5.5.1 Results at 0.5C-Rate

Figure 32 shows the voltage and current profiles for the 0.5C-rate cycle. At this low C-rate,
the constant-current (CC) charging period lasted approximately 6224 s, followed by a CC
discharging period of 6519 s. After the discharge current was cut off, the cell exhibited a
voltage relaxation of AV = 130 mV, reflecting the decay of ohmic and concentration

overpotentials toward the equilibrium OCV.
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Figure 32 Experimental Voltage and Current Profiles at 0.5C-Rate.

Figure 33(a) presents the simulated and experimental cell-ambient temperature difference
(AT) for the 0.5C-rate cycle using both OCV-processing approaches. The Averaged-OCV at
Constant-SOC method resulted in an RMSE of 0.57 K and a maximum error of 5.1%,
yielding a peak simulated AT of 3.1 K during discharge. In contrast, the Averaged-SOC at
Constant-OCV method improved the agreement with the experimental data, reducing the

RMSE to 0.47 K and the maximum error to 5.03%, while producing the same peak simulated



AT of 3.1 K. The maximum experimental AT reached 3.25 K, which provides the reference
level for evaluating model fidelity under low C-rate conditions. As expected, the temperature
rise during discharge is higher than during charge, with an average peak difference of 0.72

K between the charging and discharging phases of each cycle.

Figure 33(b) presents the simulation results obtained when the entropic heat coefficient
(EHC) is included in the model. Incorporating the EHC leads to an increase in the RMSE to
1.75 K, which can be attributed to uncertainties in the experimental EHC measurements. The
largest deviations occur at the beginning of both the charging and discharging steps, where
the EHC is highly sensitive to the state of charge. As discussed in Section 5.4 , the
experimentally determined EHC values are higher than the reference values reported in the
literature. Because the entropic heat contribution is directly proportional to the EHC, this
discrepancy propagates through the model and results in the observed differences in the

predicted temperature profiles.
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Figure 33 lllustration of the Simulated and Experimental Cell-Ambient Temperature Difference (AT) with the Applied
Current Profile at 0.5C-Rate: (a) Excluding the EHC and (b) Including the EHC.

5.5.2 Results at 1C-Rate

Figure 34 presents the voltage and current behaviour at a 1C-rate cycle. Under this nominal
operating condition, the constant-current (CC) charging period lasted approximately 2999 s,
and the CC discharging period lasted 3235 s. After the discharge phase, the voltage
recovered by AV =~ 160 mV, indicating a stronger relaxation effect compared with the 0.5C

case due to increased polarization.
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Figure 34 Experimental Voltage and Current Profiles at 1C-Rate.



Figure 35(a) presents the AT comparison for the 1C-rate cycle. As expected, increasing the
current results in a higher temperature rise and greater sensitivity to the selected OCV
averaging methods. Using the Averaged-OCV at Constant-SOC method, the RMSE
increased to 1.14 K and the maximum error to 10.12%, with a peak simulated AT of 5.6 K
during discharge. When applying the Averaged-SOC at Constant-OCV method, the
agreement with the experimental trend improved, lowering the RMSE to 0.93 K and the
maximum error to 9.79%, and yielding a peak AT of 5.9 K. The maximum experimental AT
reached 6.2 K, illustrating the stronger thermal response at nominal C-rate operation. The
temperature rise during discharge remained higher than during charge, though with a reduced

peak difference of 0.58 K compared with the 0.5C case.

Figure 35(b) shows the results when the EHC is included. Similar to the 0.5C condition,
inaccuracies in the measured EHC data introduce additional deviations. However, the
influence is more pronounced at 1C, where the RMSE increases to 2.77 K. The largest errors

appear at low and high SOC, where the entropic contribution to heat generation is strongest.
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Figure 35 lllustration of the Simulated and Experimental Cell-Ambient Temperature Difference (AT) with the Applied
Current Profile at 1C-Rate: (a) Excluding the EHC and (b) Including the EHC.

5.5.3 Results at 2C-Rate

Figure 36 illustrates the voltage and current profiles at the 2C-rate. The higher current results
in a significantly shorter constant-current (CC) charging duration of 1349 s and a CC
discharging duration of 1594 s. A pronounced voltage relaxation of AV = 190 mV was
observed after the discharge phase, which is larger than the 130 mV relaxation at 0.5C and
the 160 mV observed at 1C. This increasing trend reflects the stronger polarization and
overpotential effects that develop at higher C-rates. The 2C case therefore represents the
most demanding operating condition and is used to evaluate the model’s robustness under

aggressive cycling.
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Figure 36 Experimental Voltage and Current Profiles at 2C-Rate.

Figure 37(a) illustrates the AT profiles for the 2C-rate cycle. This operating condition
produces the highest thermal stress among all investigated cases, resulting in the largest AT
values and the strongest amplification of modelling uncertainties. Using the Averaged-OCV
at Constant-SOC approach, the RMSE reached 1.61 K and the maximum error 12.69%, with
a peak simulated AT of 13.3 K. These values represent a substantial increase relative to the
0.5C and 1C results. The Averaged-SOC at Constant-OCV method retained superior
accuracy, reducing the RMSE to 1.29 K and the maximum error to 9.48%. The peak
experimental AT reached 14.25 K, confirming the significant heat accumulation associated

with high-rate cycling.

Figure 37(b) presents the simulation results obtained with the EHC included in the model.
As observed at the other C-rates, uncertainties in the measured EHC introduce additional
deviations; however, the effect is most pronounced at 2C, where the entropic heat
contribution coincides with the large irreversible (ohmic and polarization) losses.
Consequently, the RMSE increases to 4.24 K, and the mismatch becomes most apparent
during the late-charging and early-discharging stages. Furthermore, because the entropic
heat term scales with the applied current, the high current at 2C amplifies the thermal

response, resulting in the largest temperature deviation among all tested C-rates.
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Figure 37 lllustration of the Simulated and Experimental Cell-Ambient Temperature Difference (AT) with the Applied
Current Profile at 2C-Rate: (a) Excluding the EHC and (b) Including the EHC.

5.6 Calorimetric Results

Figure 38 illustrates the voltage and current profiles at the 1C- and 2C-rates used for
calorimetric heat measurement. The average constant-current (CC) charging duration was
2737 s for 1C and 1176 s for 2C, while the corresponding discharge durations were 3166 s
and 1526 s, respectively. A pronounced voltage relaxation was observed after the discharge

phase, with AV = 187 mV at 1C and AV = 242 mV at 2C. These relaxation magnitudes are



larger than those seen in the separate 1C and 2C measurements, as the cell was charged and
discharged consecutively without a long rest period between the tests. Although the cutoff
current for the constant-voltage (CV) charging phase was set to 50 mA, the device terminated
the charge at approximately 90 mA. All other test conditions were identical to those listed

in Table 4.
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Figure 38 Experimental Voltage and Current Profiles at Different C-Rates.

Figure 39 presents the calorimetric heat measurement (black dashed line) alongside the heat
derived from the irreversible heat generation expression (V — U,.,) * I (red solid curve).
Although both profiles represent heat generation, the irreversible heat is approximately twice
as high as the experimentally measured value. As discussed in Section 3.4 , this discrepancy
arises from the design limitations of the calorimeter, which is optimised specifically for
pouch and prismatic cells. As a result, its thermal response tends to underestimate the heat
produced by cylindrical cells, leading to the observed deviation between the experimental

and calculated heat generation profiles.
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6 Conclusion

This thesis examined the thermal behaviour of a 21700 NCA cylindrical lithium-ion cell and
evaluated a lumped thermal model using experimentally derived inputs. A central focus of
the work was the comparison of two different OCV—-SOC construction methods, Averaged-
OCV at Constant-SOC and Averaged-SOC at Constant-OCV, and their influence on the

simulated temperature response across different C-rates.

The parameter identification demonstrated good repeatability, as cooling-curve
measurements from two separate cells produced nearly identical AT decay profiles and a
consistent thermal time constant of approximately 500 s. The reference OCV-SOC results
confirmed voltage hysteresis between charging and discharging, and both OCV-averaging
methods produced almost identical equilibrium curves with only minor deviations at low
SOC. Temperature-dependent OCV measurements showed consistent behaviour at 23 °C
and 40 °C, while clear irregularities were observed at 30 °C, leading to the exclusion of that
dataset. The entropic heat coefficient measurements exhibited notable differences between
the charge and discharge paths, especially at low and high SOC, which affected the accuracy

of simulations that included reversible heat.



Using the two OCV-processing methods, the thermal model was evaluated at three C-rates:
0.5C, 1C, and 2C. At 0.5C, both methods produced similar results, with the Averaged-SOC
at Constant-OCV method achieving slightly better agreement (RMSE 0.47 K) compared
with the Averaged-OCV at Constant-SOC approach (RMSE 0.57 K). At 1C, the temperature
rise increased, and the difference between the two methods remained small, though the SOC-
averaged method again yielded better alignment with experiment. At 2C, the highest thermal
stress occurred, resulting in the largest AT values and the strongest model deviations. Even
under these demanding conditions, the SOC-averaged method provided the lower RMSE,

demonstrating a more robust performance across all operating conditions.

Simulations incorporating the entropic heat coefficient demonstrated consistently higher
errors across all C-rates, with discrepancies most prominent at low and high SOC where the
entropy measurements exhibited the greatest instability. These results indicate that, although
the reversible heat term is physically meaningful, its effective use in thermal modelling
depends on highly reliable entropy data. To address this limitation, the potentiometric
method at constant SOC can be proposed as a more accurate technique for determining the
entropic heat coefficient. By evaluating the variation of open-circuit voltage with
temperature under quasi-static or equilibrium conditions at fixed SOC values, this method
isolates the reversible entropic contribution by eliminating current-dependent polarization
and kinetic effects, thereby providing a more robust representation of the cell’s

thermodynamic behaviour.

Calorimetric cycling tests provided additional validation by measuring the heat generation
directly. The irreversible heat calculated using (V — U,.,) * I was nearly twice the
calorimetric measurement. This gap is explained by the known limitations of the calorimeter,
which is optimized for pouch and prismatic cells and underestimates heat generation for

cylindrical formats.

Overall, the results show that the developed lumped thermal model can accurately capture
the temperature evolution of the 21700 cell when reliable input parameters are used. Among
the two investigated simulation methods, the Averaged-SOC at Constant-OCV approach
consistently provided better agreement with the experimental AT across all C-rates. The
model is therefore suitable for use in thermal analysis and can support future thermal-

management development for cylindrical lithium-ion cells.
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Appendix 1. Experimental and Modelling Temperature Results at Different C-Rate
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Figure A1 Experimental and Model-predicted Temperature Evolution During Cyclic Charge—discharge at 0.5C.
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Figure A2 Experimental and Model-predicted Temperature Evolution During Cyclic Charge—discharge at 1C.
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Figure A3 Experimental and Model-predicted Temperature Evolution During Cyclic Charge—discharge at 2C.



