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This thesis investigates the thermal behaviour of a commercial 21700 NCA lithium-ion cell 

through combined experimental characterisation and lumped thermal modelling. The work 

focuses on quantifying heat generation mechanisms and predicting temperature evolution 

under various operating conditions. Experimental measurements include open-circuit 

voltage profiling, entropic heat coefficient determination, heat-transfer coefficient 

estimation, and charge–discharge cycling at 0.5C, 1C, and 2C. Additional calorimetric 

experiments are conducted to validate the thermal model under controlled thermal boundary 

conditions. The modelling framework incorporates reversible and irreversible heat 

generation, temperature-dependent parameters, and a thermal time constant extracted from 

cooling-curve analysis. Model predictions are evaluated against measured temperature 

responses, showing reasonable agreement across all tested C-rates. The results highlight the 

influence of current rate on heat generation, voltage relaxation, and thermal response, while 

demonstrating the suitability of a calibrated lumped model for representing the thermal 

dynamics of cylindrical Li-ion cells. The developed methodology provides a practical 

foundation for future battery thermal management design and for scaling cell-level thermal 

characteristics to module-level simulations.  
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1  Introduction 

Lithium-ion batteries are widely used in portable electronics, electric vehicles, and energy-

storage systems due to their high energy density, long cycle life, and efficient performance. 

However, their thermal behavior remains a critical challenge, as temperature strongly 

influences internal resistance, ageing, safety, and overall performance. Understanding and 

predicting heat generation is therefore essential for ensuring reliable and safe battery 

operation. 

During charge and discharge, electrochemical processes generate heat through both 

irreversible losses and reversible thermodynamic effects. The magnitude of this heat depends 

on the operating conditions, cell chemistry, and physical design of the cell. Cylindrical cells 

are widely adopted due to their robustness and manufacturing practicality, but their compact 

geometry can result in significant temperature rise under high current loads. 

This thesis investigates the thermal behavior of a 21700 NCA cylindrical cell by developing 

a lumped thermal model capable of predicting cell temperature during operation. The model 

incorporates experimentally measured open-circuit voltage, entropic heat coefficients, and a 

thermal time constant obtained from cooling-curve analysis. Experimental characterization, 

including open circuit voltage (OCV) profiling, charge and discharge cycling at various C-

rates, and calorimetric tests, provides the input data required to validate the model. 

The objective of this work is to characterize the heat generation of the cell and develop a 

calibrated thermal model that can support future thermal management strategies for 

cylindrical lithium-ion batteries. 

1.1  Lithium-ion Batteries Overview 

The development of lithium-ion batteries began in the early 1980s in response to the demand 

for lightweight, high-capacity rechargeable power sources. Dr. Akira Yoshino created the 

first practical lithium-ion battery prototype in 1983, using lithium cobalt oxide (LiCoO₂) as 

the cathode and polyacetylene as the anode. The technology was patented in 1985, and 



 

commercialized by Sony in 1991, marking the beginning of a new era in energy storage 

(Yoshino, 2012). 

In everyday usage, the term battery is often applied to any electrochemical energy storage 

device, whether it is a single cell, a module, or a complete battery pack. A cell is the 

fundamental electrochemical unit that converts chemical energy directly into electrical 

energy. When multiple cells are electrically connected, typically in series or parallel, they 

form a module, which increases the overall voltage or capacity. Several modules, combined 

with monitoring, control units, fuses, cooling systems, and structural enclosures, form a 

battery pack, which is the fully functional system used in applications such as electric 

vehicles or energy storage systems. Although some definitions specify that a battery must 

contain at least two cells, this distinction is not always upheld. In consumer and technical 

contexts alike, the term "battery" may refer to a single cell, a module, or a pack depending 

on the level of integration. In this thesis, the term “cell” will be used to refer specifically to 

the electrochemical unit, while “battery” will denote either the complete energy storage 

assembly or be specified further as a module or pack, depending on context. (Linden & 

Reddy, 2001). 

1.1.1  Working Principles of Lithium-ion Batteries 

A lithium-ion (Li-ion) battery consists of active materials at the positive and negative 

electrodes, an electrolyte, and a separator. The separator functions as a barrier between the 

electrodes to prevent short circuits. The active materials are responsible for the oxidation 

and reduction reactions that drive battery operation. These reactions occur through an 

intercalation process, where lithium ions are inserted into or removed from host materials 

without causing significant structural changes. Typically, the positive electrode is made of a 

lithium metal oxide or phosphate, while the negative electrode is composed of graphite. The 

electrolyte contains a lithium salt, such as LiPF₆, dissolved in a mixture of organic solvents 

like ethylene carbonate (EC) and dimethyl carbonate (DMC). Aluminium and copper are 

commonly used as current collectors for the positive and negative electrodes, 

respectively(Energy, 2021). 

During discharge as shown in  Figure 1, lithium ions are de-intercalated from the negative 

electrode and intercalated into the positive electrode, while Li in negative electrode 



 

undergoes oxidation and the Li-ions in the positive electrode undergo reduction. This 

movement of lithium ions is driven by the potential difference between the electrodes, and 

electrons flow through an external circuit, producing an electric current. When the battery is 

charged, the process is reversed: lithium ions move from the positive to the negative 

electrode. In the initial cycles, parasitic reactions between the electrolyte and the negative 

electrode form a passivation layer known as the solid–electrolyte interphase (SEI). The 

formation of this layer results in an irreversible loss of lithium, which can cause a small 

reduction in capacity. However, the rated capacity of a Li-ion cell accounts for this initial 

loss (Energy, 2021). 

 

Figure 1 Discharging Process of a Lithium-ion Battery (Korthauer, 2018) 

1.1.2  Overview of Li-ion Battery Cell Formats  

Lithium-ion batteries are manufactured in several standardized cell formats, each designed 

to meet specific requirements related to energy density, mechanical stability, thermal 

performance, and packaging efficiency (Horiba, 2014). Although the fundamental 

electrochemical principles are identical across all configurations, the external geometry and 

internal assembly strongly influence the cell’s behaviour, integration flexibility, and 

suitability for different applications. The most common commercial formats include 

cylindrical, prismatic, pouch, and coin cells, each offering distinct advantages and trade-offs 

in terms of performance, safety, and manufacturing complexity. A brief overview of these 



 

cell types is presented below. Figure 2 illustrates the various lithium-ion cell formats 

currently available on the market, and the following sections describe each type in detail. 

 

Figure 2 Schematic Representation of Common Lithium-ion batteries: (A) coin cell, (B) cylindrical cell, (C) prismatic cell, 
and (D) pouch cell (Liang et al., 2019). 

1.1.2.1  Cylindrical Cells  

In cylindrical cells, the electrodes and separator are rolled tightly in a spiral configuration 

and enclosed within a cylindrical casing. These cells feature a robust body with flat 

terminals, offering high cycle stability but relatively low packaging efficiency. Cylindrical 

cells are typically identified using five-digit codes; for instance, the widely used 18650 cell 

has a diameter of 18 mm and a length of 65.0 mm. Other commonly used cylindrical formats 

include 14500, 14650, 18500, 21700, 26650, and 32650. These cells are frequently used in 

applications such as laptops, medical devices, communication systems, e-bikes, power tools, 

and security equipment (Arote, 2022). 

1.1.2.2  Pouch Cells 

Pouch cells are characterized by their flexible, lightweight design, which utilizes laminated 

aluminium foil as the outer casing instead of a rigid metal enclosure. This structure enables 

exceptionally high packaging efficiency, over 90%, along with reduced weight and greater 

design flexibility, making pouch cells particularly suitable for compact electronic devices 



 

and space-constrained applications. Internally, they consist of stacked layers of anodes and 

cathodes, separated by a porous non-conductive separator. These components are enclosed 

in a multi-layered laminate: the innermost layer is a heat-sealable, electrolyte-resistant 

polymer (e.g., modified polypropylene), the middle layer is aluminium for barrier protection 

and thermal conductivity, and the outer layer is typically a durable polymer such as nylon or 

polyethylene terephthalate (PET), providing mechanical strength, insulation, and 

printability. Electrical connectivity is established by welding metallic tabs to the current 

collectors, allowing external connections. Despite their many advantages, pouch cells are 

more vulnerable to mechanical damage compared to rigid battery formats (Gopinadh et al., 

2022).  

1.1.2.3  Prismatic Cells 

Prismatic cells use a semi-rigid or rigid rectangular casing, often made of aluminium or steel, 

providing high structural stability. The internal components, electrodes and separator, are 

stacked in sheets. These cells are preferred for space-constrained applications where 

minimizing swelling is important. They are marked with six-digit codes. For example, a 

504050 cell measures 5.0 mm in thickness, 40 mm in width, and 50 mm in length (Arote, 

2022). 

1.1.2.4  Coin Cells 

Coin cells, also known as button cells, are small, circular batteries commonly used in 

compact, portable devices such as wristwatches, LED lights, healthcare instruments (e.g., 

glucose meters, thermometers, heart rate monitors), calculators, remote controls, and car 

keys. These batteries typically consist of a stainless-steel casing, a graphite-coated copper 

foil serving as the anode (Purwamargapratala et al., 2020). The diameter of a coin cell is 

greater than its height, giving it its distinctive shape. 

Lithium-ion coin cell formats follow International Electrotechnical Commission (IEC) 

standards and are designated by prefixes such as “LIR.” In this nomenclature, the letters 

indicate a rechargeable lithium-ion chemistry, while the numerical code specifies the cell 

diameter and thickness in tenths of a millimeter (e.g., LIR2032 corresponds to 20 mm × 3.2 



 

mm). These cells typically consist of a stainless-steel case and cap, a separator, a graphite-

based anode, a lithium-intercalating cathode material, and an electrolyte. Common 

rechargeable lithium-ion coin cell formats include LIR2032, LIR2025, and LIR2450 (Arote, 

2022). 

1.1.3  Overview of Li-ion Battery Chemistries  

Lithium-ion batteries are composed of various chemistries, each offering distinct advantages 

and trade-offs in terms of energy density, safety, lifespan, and cost. The cathode material 

plays a critical role in determining the overall performance and suitability of the battery for 

specific applications. Lithium cobalt oxide (LiCoO₂, LCO) is widely used in portable 

electronics due to its high energy density, although it suffers from thermal instability and 

moderate cycle life. Lithium manganese oxide (LiMn₂O₄, LMO) provides improved thermal 

stability and safety but has a shorter lifespan, making it suitable for power tools and some 

electric vehicles (Horiba, 2014). Lithium iron phosphate (LiFePO₄, LFP) offers outstanding 

thermal stability and long cycle life, making it a preferred choice for electric vehicles and 

stationary storage, despite its lower energy density (Stan et al., 2014). Lithium nickel 

manganese cobalt oxide (LiNiMnCoO₂, NMC) represents a balanced option, combining 

good energy density, power capability, and cycle life, and is widely adopted in electric 

mobility solutions (Horiba, 2014). Lithium nickel cobalt aluminium oxide (LiNiCoAlO₂, 

NCA) delivers high specific energy and long lifespan, and is commonly found in premium 

electric vehicles, though it poses certain safety and cost concerns (Stan et al., 2014). 

Alongside the cathode, the anode material contributes significantly to the overall behaviour 

and performance of the battery. Graphite remains the dominant commercial anode material 

due to its structural stability and reliable lithium-intercalation behaviour. However, its 

moderate theoretical capacity and susceptibility to lithium plating at high charge rates 

present notable limitations, motivating the development of higher-capacity and more robust 

anode alternatives (X. Chen et al., 2025; Koech et al., 2024). Silicon provides exceptionally 

high theoretical capacity and demonstrates strong electrochemical performance, but its large 

volume expansion during lithiation leads to stress, cracking, and instability of the SEI layer. 

To mitigate these effects, silicon is often incorporated into structured or composite designs 

that help accommodate the volume change and preserve mechanical integrity (Dasari & 



 

Eisenbraun, 2021; Koech et al., 2024). Lithium titanate (LTO) is identified as a promising 

anode material due to its minimal volume change during cycling, which provides strong 

structural stability and improved safety compared with graphite. Although LTO exhibits low 

electronic conductivity and a moderate theoretical capacity, its performance can be 

substantially enhanced through nanostructured and composite material designs. LTO-based 

composites demonstrate reduced charge-transfer resistance, improved rate capability, and 

excellent cycling stability, achieving 97.2% capacity retention at 10C after 1000 cycles (Z. 

Zhao, 2023). Other anode materials, including alloy-type systems such as silicon and tin and 

a range of metal oxides, can offer higher capacity or enhanced electrochemical performance. 

However, these materials typically experience significant volume changes, pulverization, 

and limited electronic conductivity during cycling, which compromise their stability (Koech 

et al., 2024). 

The initial phase of this research focused on the selection of suitable lithium-ion battery 

chemistries for comparative analysis. Four commercially established cathode materials, 

Nickel Cobalt Aluminium Oxide (NCA), Nickel Manganese Cobalt Oxide (NMC), Lithium 

Iron Phosphate (LFP), and Lithium Manganese Oxide (LMO), were selected because they 

represent technologically mature and widely deployed systems in modern lithium-ion 

batteries. These chemistries were chosen due to their distinctly different electrochemical and 

thermal characteristics, which provide a robust basis for evaluating performance, safety, and 

degradation mechanisms under diverse operating conditions. Collectively, these four cell 

chemistries account for more than 90 percent of global lithium-ion cell production for 

traction and stationary energy storage applications (Assi & Amer, 2025). In addition, they 

span a wide range of specific energy, approximately 100 to 260 Wh kg−1, and cycle life, 

approximately 500 to 7000 cycles, thereby providing a representative and comprehensive 

dataset for comparative electro-thermal modelling and thermal behaviour analysis (M. K. 

Tran, Dacosta, et al., 2021; Walvekar et al., 2022). 

NCA provides high specific energy of up to 260 Wh/kg and strong power capability, which 

makes it a reference material for high performance lithium-ion cells. However, its reduced 

thermal stability and relatively high cost, mainly driven by the high content of cobalt and 

nickel, remain important limitations (X. Chen et al., 2025; Velev et al., 2024). NMC offers 

a balanced compromise between energy density in the range of 180 to 220 Wh/kg, safety, 

and cost, and typically achieves 1000 to 2000 charge discharge cycles. Its degradation 



 

behaviour is strongly influenced by the nickel to manganese ratio and the applied current 

rate (Assi & Amer, 2025; Torregrosa et al., 2024). LFP is characterised by excellent thermal 

and chemical stability, long cycle life in the range of 3000 to 7000 cycles, and enhanced 

safety due to the absence of nickel and cobalt. Although its specific energy of 120 to 160 

Wh/kg is lower than that of nickel rich chemistries, its structural robustness makes it highly 

suitable for applications that prioritise safety and durability (Walvekar et al., 2022). Lithium 

manganese oxide (LMO) provides high power capability, with a typical specific energy of 

approximately 120 Wh/kg, low material cost, and good thermal stability. However, it suffers 

from reduced cycle life, typically less than or equal to 1000 cycles, which is mainly 

associated with manganese dissolution and structural degradation under elevated operating 

temperatures (Lu et al., 2023; M. K. Tran, Dacosta, et al., 2021). 

Figure 3 summarizes the key performance metrics of these chemistries, enabling evaluation 

of trade-offs among energy density, cycle life, safety, and cost, which are critical for battery 

design, thermal management, and application specific optimization. 

 

 

Figure 3 Illustrating the Key Performance Characteristics of Four Lithium-ion Battery Chemistries: NCA, NMC, LFP and 
LMO. Each radar plot compares Safety, Specific Power, Specific Energy, Cost and Cycle Life (Walvekar et al., 2022). 



 

1.1.4  Thermal Runaway in Lithium-ion Batteries 

The cathode in a lithium-ion battery is typically composed of lithium transition metal oxides 

or phosphates with a high redox potential, which determines the operating voltage of the cell 

and contributes to its energy capacity. The anode consists of materials with a low redox 

potential and stable electrochemical behaviour, enabling reversible lithium intercalation and 

long term cycling stability. The separator and electrolyte are critical components that 

strongly influence the overall performance of lithium-ion batteries. Their physicochemical 

properties affect ionic conductivity, thermal stability, cycle life, and capacity retention. The 

separator provides electrical insulation between the electrodes while allowing lithium-ion 

migration, and the electrolyte facilitates efficient ion transport between the electrodes during 

operation. 

Figure 4 illustrates the causes of thermal runaway in lithium-ion batteries, which can be 

triggered by three types of abuse: mechanical, electrical, and thermal. Mechanical abuse 

includes crushing, impacts, or puncturing; electrical abuse involves overcharging, deep 

discharging, or short circuits; and thermal abuse results from high temperatures or exposure 

to fire. These conditions can damage the separator, leading to an internal short circuit (ISC), 

which generates excessive heat. This heat can accelerate chemical side reactions, release 

flammable gases, increase internal pressure, and eventually cause fire or explosion. The 

presence of flammable liquid electrolytes further increases this risk. Using solid-state 

electrolytes is one possible solution to improve battery safety.  

 

Figure 4 Factors Leading to Thermal Runaway in Lithium-ion Batteries (X. Feng et al., 2018) 



 

The thermal runaway process is often described by three characteristic temperatures. T1 is 

the temperature where self-heating begins, usually due to decomposition of the solid 

electrolyte interphase (SEI). T2 is the temperature at which thermal runaway is triggered, 

often caused by separator failure and internal short circuit. At this point, the temperature rise 

becomes rapid. T3 is the highest temperature reached during the process. Some thermal 

models focus on the entire process from T1 to T3, while others simulate only part of the 

response, such as from T2 to T3 (M.-K. Tran et al., 2022). Figure 5 illustrates these stages 

and highlights the sequence of thermal and electrochemical reactions leading to thermal 

runaway in lithium-ion batteries. 

 

Figure 5 Runaway Mechanism and Critical Temperature Ranges for lithium-ion Batteries (H. Li et al., 2019; Qi et al., 
2025). 

1.2  Battery Thermal Management Systems (BTMS) 

As electric vehicles (EVs) continue to evolve, manufacturers adopt different strategies in 

battery design and configuration to meet growing demands for performance and driving 

range. With the increasing capacity of EV batteries, the need for efficient thermal 

management becomes even more important. According to the Global EV Outlook Report 

(IEA, 2020), battery electric vehicles (BEVs) are expected to achieve average driving ranges 

of 350 to 400 km by 2030, supported by battery capacities of approximately 70-80 kWh. 

These advances bring batteries closer to the performance range of conventional fuel-powered 

vehicles (He, 2024). However, as battery size and power increase, so does the importance of 

integrating advanced battery thermal management systems (BTMSs). These systems play a 

key role in ensuring battery safety, extending lifespan, and maintaining consistent 



 

performance under various operating conditions. As the industry shifts toward more 

sustainable transportation solutions, the implementation of reliable and efficient BTMS 

becomes essential in supporting the next generation of EV technologies. 

Lithium-ion batteries (LIBs), which are widely used in EVs, are sensitive to both high and 

low operating temperatures, as well as to temperature inconsistencies within the battery 

pack. The primary goal of a BTMS is to keep the entire battery within a safe and efficient 

temperature range during operation and charging. However, thermal performance is not the 

only consideration. A practical BTMS must also be lightweight, scalable, energy-efficient, 

and compatible with other components within the battery pack. It is generally recommended 

that the BTMS should not exceed 20% of the total battery pack weight, and it should not 

interfere with critical elements such as wires, busbars, or structural components (Olabi et al., 

2022). 

 

Figure 6 Temperature window ensuring optimal LIB efficiency (Ianniciello et al., 2018) 

In terms of thermal targets, effective cooling strategies aim to maintain the maximum battery 

temperature (Tmax) below 40°C, and preferably under 35°C, while ensuring that the 

minimum temperature (Tmin) remains above 15°C during colder conditions. To promote 

uniform performance and reduce degradation, the temperature variation within the battery 

pack (ΔT) should be kept under 5°C.  

BTMS technologies can be categorized in several ways, including active or passive systems, 

heating or cooling approaches, and by the type of cooling method used such as air, liquid, 



 

phase change materials (PCM), or heat pipes (HP). Active systems, which use fans or pumps 

to drive cooling, are common in liquid and air-based designs and are known for their high 

efficiency, though they add system complexity. In contrast, passive systems use PCMs or 

HPs to dissipate heat without the need for external power. PCM-based systems are 

particularly useful for improving temperature uniformity, while HPs are valued for their fast 

response and high thermal conductivity (Olabi et al., 2022). 

An overview of different cooling methods is presented in Figure 7, and will be explored in 

more detail below. 

 

Figure 7 Categories of Battery Thermal Management Systems (Olabi et al., 2022) 

1.2.1  Active Cooling  

Active cooling methods are essential in battery thermal management systems (BTMS), 

particularly for applications involving high power demands such as fast charging, steep 

accelerations, or prolonged operation. These systems employ external mechanisms to drive 

a working fluid, typically air or liquid, to effectively dissipate the heat generated during 

battery operation. By offering enhanced thermal regulation and precise temperature control, 

active cooling helps maintain battery safety, efficiency, and lifespan (Z. Zhao et al., 2021). 

The two most common active cooling strategies are air-based and liquid-based systems, 

which are discussed in detail below. 



 

1.2.1.1  Air Cooling 

Air-based cooling systems are widely adopted in BTMS due to their simplicity, reliability, 

cost-effectiveness, and safety. Air, being abundant and having excellent dielectric properties, 

eliminates the need for electrical isolation between coolant and battery cells. This allows for 

flexible integration with various cell geometries and simplifies battery-swapping designs by 

removing the need for liquid coolants. 

Air BTMS typically employs blowers or air conditioning units to regulate battery 

temperature. Forced air convection provides higher heat rejection compared to natural 

convection, but it may generate additional noise and require larger ducts and blowers, 

increasing the system's size, weight, and parasitic power consumption, which may offset its 

inherent advantages (Basu et al., 2016). 

Recent studies have focused on improving air cooling performance by optimizing cell layout, 

airflow paths, or combining air cooling with other thermal strategies (Basu et al., 2016). 

Among these, cell arrangement plays a crucial role. Poor layout can restrict airflow, trap 

heat, and create thermal hotspots, posing safety and performance risks during EV operation 

(Yang et al., 2015). 

 

Figure 8 Schematic diagram of (a) an air-based battery cooling system, and cell arrangement configurations: (b) aligned, 
(c) staggered, and (d) cross (He, 2024)  

It is also important to highlight an additional configuration of the air cooling system. In terms 

of airflow direction, various path configurations have been proposed and can be mainly 



 

categorized into three types: U-type, Z-type, and other novel designs, as illustrated in Figure 

9. The U-type and Z-type represent conventional layouts. In the U-type battery pack, where 

both the inlet and outlet are located on the same side, cooling air enters through the lower 

duct, passes through the channels between adjacent battery cooling plates, and exits as heated 

air from the upper vent via the outlet. In contrast, the Z-type battery pack positions the inlet 

and outlet on opposite sides (He, 2024). Since the outlet is fixed in these conventional 

designs, (Y. Liu & Zhang, 2019) proposed a novel J-type airflow configuration incorporating 

two outlets controlled by valves to improve cooling flexibility. 

 

Figure 9 (a) U-type, (b) Z-type, and (c) J-type BTMS configurations (He, 2024). 

1.2.1.2  Liquid Cooling 

Liquid cooling is one of the most effective thermal management methods for lithium-ion 

battery systems, and it can be categorized into two main types: indirect cooling and direct 

cooling (also referred to as immersion cooling), depending on whether the coolant comes 

into direct contact with the battery components. 



 

In indirect liquid cooling, the coolant circulates through components such as cooling plates 

(E et al., 2018), discrete tubes (Xia et al., 2017), or cooling jackets (Sheng et al., 2021) placed 

in contact with the outer surfaces of the battery cells. This method allows the heat generated 

by the battery to be transferred away without the coolant directly touching the cells, thereby 

reducing the risk of electrical hazards (Thakur et al., 2020). 

On the other hand, direct liquid cooling involves full contact between the coolant and the 

battery. This requires the use of non-conductive fluids to prevent short circuits. The key 

advantage of this method is the significantly improved thermal contact area, resulting in a 

much higher heat transfer rate. Direct liquid cooling can be further divided into single-phase 

and two-phase systems, based on whether the coolant undergoes a phase change during heat 

absorption. Compared to indirect systems, direct liquid cooling generally provides better 

thermal regulation and more uniform temperature distribution across the battery pack. The 

direct contact between the battery and coolant also allows for simpler flow path designs and 

reduces the complexity of sealing systems, thereby lowering the risk of coolant leakage and 

subsequent failures. Despite these advantages, direct liquid cooling is not yet widely 

implemented in commercial electric vehicles due to challenges such as fluid selection, cost, 

and safety considerations (J. Liu et al., 2023). 

 

Figure 10 Schematic Illustration of (a) Direct and (b) Indirect (Trumony, 2025) Liquid Cooling Methods for Battery Packs 



 

1.2.2  Passive Cooling 

Passive cooling strategies in Battery Thermal Management Systems (BTMS) have gained 

traction due to their ability to regulate battery temperature without relying on external energy 

input or complex mechanical components (Siddique et al., 2018). These systems capitalize 

on the inherent properties of materials and physical phenomena, such as latent heat 

absorption, to dissipate heat. Compared to active systems, passive methods offer advantages 

such as reduced weight, improved reliability, and lower parasitic power consumption, 

making them especially suitable for compact or cost-sensitive applications (Nicholls et al., 

2024). Among the most widely studied passive approaches are phase change materials 

(PCMs) and heat pipes (HPs), both of which have shown promise in maintaining temperature 

stability and improving battery safety (Sharifi et al., 2024). The following sections explore 

the mechanisms, classifications, and performance characteristics of these passive cooling 

technologies in detail. 

1.2.2.1  Phase Change Materials (PCM) 

PCMs have recently gained attention as a promising solution for managing the thermal 

behavior of lithium-ion batteries. Compared to conventional air or liquid cooling methods, 

PCMs offer distinct advantages, primarily due to their ability to absorb and store significant 

amounts of heat via latent heat during phase transitions between solid and liquid states. 

Figure 11 illustrates this thermal response, highlighting the isothermal segment that 

corresponds to the phase change process. When the battery temperature rises near the PCM's 

melting point, the material begins to melt and absorbs heat, effectively maintaining a stable 

temperature close to the phase change temperature. By carefully selecting a PCM with an 

appropriate melting point, the battery can be kept within its optimal operating temperature 

range. During this melting process, the PCM continues to absorb heat without a significant 

increase in temperature until the phase change is complete. Unlike traditional materials that 

rely on sensible heat storage, PCMs utilize latent heat, which enables a much higher heat 

storage capacity in a compact and lightweight form. PCM-based cooling systems are entirely 

passive, requiring no fans, pumps, or external power sources. This passive nature not only 

reduces system complexity and maintenance needs but also enhances reliability. 



 

Additionally, PCMs can help suppress thermal runaway events by passively absorbing 

excess heat generated during uncontrolled exothermic reactions, potentially preventing 

dangerous temperature spikes (Nasiri & Hadim, 2025). 

 

 

Figure 11 Temperature vs. Time profile of a Phase Change Material (PCM) during heating 

However, one of the main limitations of PCMs is their inherently low thermal conductivity, 

which slows both the rate of heat absorption from the battery and the rate of heat dissipation 

to the environment. This can reduce the effectiveness of PCM-based systems, especially in 

applications with high heat loads or rapid charge/discharge cycles. As a result, improving 

the thermal conductivity of PCMs through material enhancement strategies has become a 

key area of research in battery thermal management (Dong et al., 2023). 

One way to classify PCMs is by the type of phase transition they undergo. These include 

solid-solid (SSPCMs), solid-liquid (SLPCMs), solid-gas (SGPCMs), and liquid-gas 

(LGPCMs) transitions (Maknikar & Pawar, 2023; Pielichowska & Pielichowski, 2014; W. 

Wu et al., 2020). Among these, solid-liquid PCMs (SLPCMs) are the most used in battery 

thermal management systems because they offer a high capacity for storing thermal energy 

and experience only minimal volume change during melting and solidifying (W. Wu et al., 

2020). However, one drawback is that they can leak when in liquid state. To address this, 

researchers often add materials known as functional fillers to stabilize the structure and 

improve heat transfer (Zhi et al., 2022). In contrast, solid-solid PCMs (SSPCMs) avoid the 

leakage issue entirely because they do not melt. Instead, they change their internal crystal 



 

structure during phase transition. This makes them a stable and clean option, especially in 

applications where dimensional stability and cleanliness are essential (Zeng et al., 2024). 

 

Figure 12 Classification of Phase Change Materials (PCMs) 

The second classification is based on chemical composition, dividing PCMs into organic, 

inorganic, and eutectic types. Organic PCMs are preferred in many applications due to their 

stability, non-corrosiveness, and relatively high latent heat capacity. They include paraffin 

hydrocarbons whose properties improve with longer carbon chains. However, increasing the 

chain length also elevates the melting point, which may be unfavorable for battery thermal 

management applications. Non-paraffins such as fatty acids, esters, alcohols, and 

polyethylene glycols (PEGs) offer alternative phase-change options, providing a wider range 

of melting temperatures and improved tunability for specific thermal management 

requirements (Ianniciello et al., 2018). Despite their benefits, organic PCMs suffer from low 

thermal conductivity, flammability, and potential leakage during the melting phase, all of 

which can increase thermal resistance and safety risks in BTMS (Cai et al., 2023; C. Liu et 

al., 2020; Zhi et al., 2022). Inorganic PCMs, such as hydrated salts and metal alloys, offer 

better thermal conductivity and latent heat values across a broad temperature range (−100 

°C to +1000 °C), but they face issues like supercooling, corrosion, and phase separation 



 

(Avik, 2024). Hydrated salts like CaCl₂·6H₂O and MgCl₂·6H₂O are among the most 

researched for PCM applications. Metal-based PCMs, though highly conductive, are dense, 

expensive, corrosive and less practical for large-scale systems (Ianniciello et al., 2018). 

Eutectic PCMs, which are mixtures of two or more pure materials, exhibit congruent melting 

and solidification behavior at a fixed temperature, often lower than the components 

themselves (Milián et al., 2017). These can be categorized into organic–organic, inorganic–

inorganic, and organic–inorganic eutectics (Baetens et al., 2010; Zhi et al., 2022). While 

eutectic PCMs offer enhanced thermal reliability and tunable melting points, their thermal 

conductivity and long-term performance remain underexplored (C. Liu et al., 2020; Nazir et 

al., 2019). 

Lastly, PCMs are classified by temperature range, which is critical for selecting the 

appropriate material for BTMS applications. One classification approach groups PCMs into 

low-temperature (<220 °C), medium-temperature (220–420 °C), and high-temperature 

(>420 °C) categories (Alehosseini & Jafari, 2020). A more BTMS-relevant classification 

proposed by Cai et al., 2023) defines low-temperature PCMs as those melting below 100 °C, 

medium-temperature PCMs between 100 and 300 °C, and high-temperature PCMs above 

300 °C. For lithium-ion battery systems, PCMs with melting points between 20 and 50 °C 

are recommended, as they help maintain operating temperatures below the safety threshold 

of 50 °C (Rao et al., 2011). Organic PCMs are suited for low-temperature conditions, while 

inorganic PCMs are more suitable for high-temperature thermal storage (Y. Zhao et al., 

2022). 

1.2.2.2  Heat Pipes 

Heat pipes (HPs) have become a popular solution for temperature regulation across many 

residential and commercial applications, largely because of their exceptional heat transfer 

abilities. Often called "thermal superconductors", HPs can conduct heat up to ninety times 

more efficiently than a copper rod of the same size. This property allows them to maintain a 

nearly uniform temperature at the evaporator surface. Their adaptable geometry also makes 

them suitable for integration into various spatial configurations. As a result, HPs are 

increasingly viewed as an effective option for cooling and temperature control in hybrid and 

electric vehicle (HEV/EV) battery systems (Afzal et al., 2023). 



 

At their core, heat pipes operate using a two-phase heat transfer mechanism, which allows 

them to move substantial amounts of thermal energy with minimal temperature differences. 

This phase-change process provides a significantly higher effective heat transfer coefficient 

compared to conventional single-phase systems. Additionally, HPs do not require any 

auxiliary coolant-circulation system, which reduces system complexity and energy 

consumption (Tardy & Sami, 2009; Xiao & Faghri, 2008). 

As illustrated in Figure 13, a heat pipe typically consists of a closed metal tube divided into 

three sections: the evaporator, the adiabatic zone, and the condenser. Inside this sealed 

structure, a working fluid exists in both liquid and vapor phases. When heat is applied to the 

evaporator, the fluid absorbs this energy and vaporizes. The resulting vapor travels to the 

condenser, where it releases its latent heat and returns to a liquid state. This extracted heat is 

usually removed through a cooling loop, commonly air or water based. Finally, the liquid 

flows back to the evaporator section through a wick structure via capillary action. Thanks to 

their high thermal efficiency, passive operation, and design flexibility, heat pipes present a 

highly promising approach for future battery thermal management systems (Afzal et al., 

2023). 

 

Figure 13 Schematic of a heat pipe illustrating two-phase heat transfer via vapor flow and liquid return through the wick 
structure(Afzal et al., 2023). 

1.2.3  Hybrid 

Recently, hybrid cooling techniques that integrate passive and active cooling strategies have 

gained increasing attention to address the growing thermal management challenges in battery 

modules. These approaches are particularly relevant under extreme operating conditions 



 

such as high-speed driving, uphill movement, or fast charging, where the charging rate can 

reach 4C to 6C with power levels up to 400 kW, significantly exceeding the conventional 

1.5–2.0C rates used in typical electric vehicles. A common hybrid configuration involves 

the combination of PCM cooling with forced air, liquid, or heat pipe systems. Figure 11 

illustrates various hybrid cooling strategies used in battery thermal management. Such 

integration helps leverage the latent heat absorption of PCMs while enabling active heat 

removal to maintain acceptable temperature ranges. Studies have shown that PCM-liquid 

cooling systems can effectively control the maximum temperature during high-rate 

discharges, although maintaining uniform temperature distribution across the module 

remains a challenge. Temperature differences have often exceeded the ideal threshold of 

5 °C, highlighting the need for further optimization in both system design and thermal 

uniformity. Moreover, hybrid systems generally introduce additional weight due to the 

inclusion of PCMs, pumps, fans, and heat sinks. Since increased weight directly affects 

vehicle energy efficiency, lightweight design should also be a key optimization objective 

alongside thermal performance parameters (X. Wu et al., 2020). 

 

Figure 14 Basic layout of hybrid battery thermal management systems: (a) air–PCM, (b) liquid–PCM, and (c) heat pipe 
(Vikram et al., 2024) configurations. 

1.3  LIB Modelling Approaches 

To design efficient and safe battery systems, especially for electric vehicles (EVs), it is 

crucial to accurately model both the electrochemical and thermal behaviour of lithium-ion 



 

batteries. Battery modelling approaches are generally categorized into empirical, 

electrochemical, and data-driven models. Empirical models, such as equivalent circuit 

models (ECMs), are derived from experimental data and widely used in battery management 

systems (BMS) due to their simplicity and low computational demands. These models 

typically consist of combinations of resistors and capacitors to represent the dynamic 

electrical behaviour of the battery (M. K. Tran, Mathew, et al., 2021). In contrast, 

electrochemical models, including the Pseudo-2D (P2D) and Single Particle Model (SPM), 

provide deeper insight by solving partial differential equations based on ion transport, 

reaction kinetics, and spatial variations within the cell, offering a detailed understanding of 

the internal physical and chemical processes (S. Han et al., 2021). Although these models 

are powerful, they come with increased computational complexity. With the rise of artificial 

intelligence, data-driven models have emerged as a promising approach. These models use 

machine learning algorithms to predict battery behaviour and performance from large 

datasets, often without requiring explicit physical equations (Felix Omojola et al., 2024; Oh 

et al., 2024). Each of these modelling strategies has its advantages and limitations, and their 

selection depends on the specific application and required level of accuracy. 

1.3.1  Electrochemical Modelling 

This section focuses specifically on electrochemical modelling approaches, which describe 

lithium-ion battery behaviour using governing equations for ion transport, charge transfer, 

and thermodynamic processes. These models vary in their level of detail and computational 

requirements, ranging from microstructure-resolved heterogeneous models (Lu et al., 2020) 

to porous-electrode formulations such as the P2D framework (Doyle et al., 1993), as well as 

reduced-order representations including the Single Particle Model (Haran et al., 1998) and 

its variants. The following subsections provide an overview of these electrochemical 

modelling categories. 

1.3.1.1  Heterogeneous Models 

The heterogeneous model provides a detailed and spatially resolved approach to simulating 

the behaviour of lithium-ion batteries by reconstructing the actual three-dimensional (3D) 



 

microstructure of the electrodes and electrolyte phases. This is achieved using advanced 

imaging techniques such as X-ray micro-computed tomography, which enables accurate 

modelling of the solid and pore domains without requiring volume-averaged parameters such 

as porosity or average particle size (Lu et al., 2020). 

Unlike conventional volume-averaged models, the heterogeneous model incorporates 

explicit geometrical features and boundary conditions at the particle scale. This allows for a 

high-resolution analysis of spatial variations in lithium concentration, current density 

distribution, and local temperature gradients within the electrode. Such detail is particularly 

important for analysing performance during high-rate charge/discharge cycles and for 

investigating degradation phenomena at the microstructural level (Fang et al., 2020; Lu et 

al., 2020). 

 

Figure 15 Reconstructed 3D Volume of the Electrode Showing Distinct Phases in Greyscale: White Represents NMC Active 
Material, Dark Grey Indicates the Carbon-Binder Domain, and Black Corresponds to the Pore Space (Lu et al., 2020). 

Additionally, the model facilitates the evaluation of mechanical stresses that develop during 

electrochemical cycling. These stresses originate from the non-uniform expansion and 

contraction of active materials due to inhomogeneous lithiation, which may lead to cracking, 

delamination, or separator deformation. This, in turn, affects both the mechanical integrity 

and safety of the cell (Fang et al., 2020). 

Despite its advantages, the application of heterogeneous modelling in practical battery 

design remains limited by several challenges. High computational demands and the need for 

high-resolution tomographic data can restrict scalability. Moreover, limitations in imaging 

resolution and possible distortions during image acquisition may affect the model's accuracy. 



 

Certain interfacial features such as contact resistance between the current collector and the 

electrode coating also remain difficult to capture with current imaging techniques (Fang et 

al., 2020). 

1.3.1.2  Pseudo-2D (P2D) Models 

The Pseudo-Two-Dimensional (P2D) model, originally developed by Doyle, Fuller, and 

Newman based on concentrated solution theory, is widely regarded as one of the most 

accurate and detailed electrochemical models for describing the behaviour of porous 

electrode lithium-ion batteries (Doyle et al., 1993). This model has been successfully 

validated across various lithium chemistries, including lithium iron phosphate (LFP), lithium 

cobalt oxide (LCO), lithium nickel cobalt aluminium oxide (NCA), and lithium nickel 

manganese cobalt oxide (NMC) (Haosong He, 2024). 

The P2D model operates under two core assumptions: (1) the active material in the electrode 

is composed of spherical particles, with lithium transport governed by solid-state diffusion; 

and (2) the electrical conductivity of the current collectors is sufficiently high to neglect 

variations along the transverse directions (y and z), allowing the model to focus on one-

dimensional (x-direction) dynamics for reaction and transport processes. As illustrated in 

Figure 16, the model divides the battery cell into three primary domains: the negative 

electrode, the electrolyte (separator), and the positive electrode. During discharge, lithium 

ions de-intercalate from the solid phase in the negative porous electrode, migrate through 

the electrolyte, and intercalate into the solid phase of the positive porous electrode. This 

process reverses during charging (Kemper et al., 2015). 



 

 

Figure 16 Pseudo-Two-Dimensional Model During the Charge and Discharge Process (Al-Gabalawy et al., 2020). 

Despite its high accuracy, the full-order P2D model involves many nonlinear partial 

differential equations (PDEs), which require numerical solutions due to the lack of analytical 

ones, resulting in high computational costs (S. Han et al., 2021). This makes it impractical 

for simulating thermal and electrochemical behaviour under varying duty cycles in real-time 

applications, particularly in battery thermal management system (BTMS) design for electric 

vehicles (EVs) (Cheng, 2019). Although some studies have developed reduced-order P2D 

models to improve computational efficiency (C. Li et al., 2021)(Li et al., 2021), the inclusion 

of detailed internal phenomena such as current distribution often adds limited value for 

thermal analysis at the module level (Kantharaj & Marconnet, 2019). As a result, the P2D 

model may be considered overly complex for large-scale thermal modelling in EV 

applications. 

1.3.1.3  Single Particle Models (SPM) 

To reduce the complexity of the P2D model, (Haran et al., 1998 proposed the single particle 

model (SPM), which assumes that each electrode in a cell can be represented by a single, 

uniformly sized spherical particle (see Figure 17). This simplification is valid under the 

condition of uniform current distribution across both electrodes. The model neglects spatial 

variations in concentration and potential within the electrolyte phase, replacing them with a 



 

lumped solution resistance term. Consequently, the electrolyte phase is excluded from the 

model, and lithium concentration within the solid phase is described using a second-order 

polynomial. This approach significantly improves computational efficiency while 

maintaining acceptable accuracy under 1C operating conditions. To enhance the model’s 

realism, Guo et al., 2011  incorporated temperature dependence into the original SPM. Their 

results showed strong agreement with experimental voltage data for lithium-ion pouch cells 

discharged at rates of 0.03C, 0.5C, and 1C across a temperature range of 15 °C to 45 °C. 

 

Figure 17 Simplified Concept of the Single Particle Model (SPM), Representing Each Electrode as a Single Spherical 
Particle (Zhang et al., 2020). 

However, the assumptions of the SPM break down at high C-rates (i.e., >1C), where 

concentration gradients in the electrolyte phase become significant (Guo et al., 2011). This 

leads to over 10% error in voltage predictions and a comparable discrepancy in heat 

generation estimation (Khaleghi Rahimian et al., 2013). Consequently, the SPM becomes 

inadequate for accurate heat generation prediction under full-range EV operating conditions, 

limiting its suitability for BTMS design. 

1.3.1.4  Lumped Single Particle Models 

To address the limitations of the SPM at higher C-rates, (Ekström et al., 2018) introduced 

the Lumped Single Particle Model (LSPM), which simplifies the SPM by assuming that only 

one electrode contributes significantly to diffusion-related voltage losses. This approach 

reduces model complexity, lowering the number of required parameters to approximately 

10, compared to 22 and 40 for the SPM and P2D models, respectively. The LSPM improves 

accuracy under >1C conditions by fitting three key electrochemical parameters ohmic 



 

overpotential at 1C (ηohm,1c), dimensionless charge exchange current (Jo), and diffusion time 

constant (τ) to experimental data using the Levenberg–Marquardt algorithm (Ekström et al., 

2018). The non-destructive nature of the data acquisition process makes the model suitable 

for EV applications (Ng et al., 2020). Voltage prediction errors remained within 12 mV 

under dynamic drive cycles up to ±10C (Ekström et al., 2018), and under low C-rates (e.g., 

0.3C), discrepancies were less than 7 mV (Ng et al., 2020). These benefits have led to 

increasing adoption of LSPM in thermal modelling studies. 

1.3.2  Equivalent Circuits Models (ECM) 

The Equivalent Circuit Model (ECM) is an empirical model developed based on 

experimental data. It typically consists of a series resistor and one or more parallel resistor-

capacitor (RC) networks, as shown in Figure 18 The resistor R0 represents the internal ohmic 

resistance of the battery cell, while the RC networks capture dynamic electrochemical 

phenomena such as double-layer capacitance, charge transfer, and mass transport effects 

(Ding et al., 2019). Due to its simplicity and low computational demand, the ECM is widely 

employed in battery management systems (BMS) for estimating the state of charge (SOC) 

and state of health (SOH) (M. K. Tran, Mathew, et al., 2021). However, unlike physics-

based electrochemical models, the ECM provides no direct insights into the internal 

physicochemical processes of the cell. Its parameters (e.g., resistors and capacitors) are 

generally extracted using hybrid pulse power characterization (HPPC) tests under isothermal 

conditions at varying SOC levels. In practice, however, electric vehicle (EV) batteries 

operate across a broad temperature spectrum, limiting the ECM's effectiveness in predicting 

thermal behaviour for battery thermal management system (BTMS) applications (M. K. 

Tran, Mathew, et al., 2021). Furthermore, achieving high accuracy with ECM requires 

extensive datasets, which becomes particularly challenging for aging studies, where 

parameter recalibration is frequently needed to reflect the evolving battery characteristics 

(Teliz et al., 2022). 



 

 

Figure 18 Schematic of an Equivalent Circuit Model (ECM) with multiple RC parallel networks (n-RC)(Ding et al., 2019) 

1.3.3  Machine Learning  

Artificial intelligence (AI) has emerged as a powerful approach for modelling and simulating 

lithium-ion batteries, offering high prediction accuracy and reduced computational cost 

compared to traditional physics-based models. AI-driven techniques, particularly those 

based on machine learning (ML), can learn complex relationships from large datasets, 

enabling accurate predictions of state of charge (SOC), state of health (SOH), voltage 

response, internal temperature, and capacity degradation without requiring detailed 

electrochemical equations. Models such as artificial neural networks (ANNs), support vector 

machines (SVMs), and deep learning architectures have been successfully applied to forecast 

battery behaviour under diverse operational conditions. These data-driven methods are 

especially beneficial for real-time implementation in battery management systems (BMS), 

where they facilitate fast decision-making to enhance battery safety, efficiency, and lifespan. 

Furthermore, hybrid approaches that integrate physics-based understanding with AI 

techniques, known as physics-informed machine learning, are gaining attention for 

combining interpretability with predictive performance. Thus, AI modelling presents a 

promising path for advancing battery simulation, particularly when conventional modelling 

is limited by computational burden or incomplete knowledge of material parameters (Felix 

Omojola et al., 2024). 



 

 

Figure 19 Battery Energy Management and Control Framework for EV Applications (Cavus et al., 2025). 

 

2  Thermal Modelling 

Battery modelling approaches can be applied at different levels of abstraction, ranging from 

module and pack configurations down to the electrochemical processes within a single cell. 

Since the thermal behaviour of the overall system originates from cell-level phenomena such 

as reaction kinetics, transport processes, and local heat generation, cell modelling provides 

the necessary foundation for accurate thermal simulations (Cheng, 2019; S. Han et al., 2021). 

2.1  Cell Modelling 

Within cell modelling, heat generation plays a central role because it directly links the 

electrochemical processes to the resulting thermal response. Understanding how reversible 

and irreversible sources of heat arise is therefore a prerequisite for predicting temperature 

evolution and designing effective thermal management strategies (Jindal et al., 2022; Nazari 

& Farhad, 2017). 



 

2.1.1  Heat Generation in LIBs 

The thermal response of lithium-ion batteries is a critical factor influencing their 

performance, safety, and lifespan. The heat generated inside a battery during operation 

originates from two primary sources: reversible and irreversible heat. The reversible heat is 

associated with the entropy change of the electrochemical reactions and can be either 

endothermic or exothermic, depending on the sign of the entropy coefficient (
𝜕𝑈𝑜𝑐𝑣

𝜕𝑇
), where 

𝑈𝑜𝑐𝑣 is the open-circuit voltage. It is given by: 

𝑄𝑟𝑒𝑣  =  ±𝐼𝑇
𝜕𝑈𝑜𝑐𝑣

𝜕𝑇
 

(1) 

where 𝐼 denotes the current, and 𝑇 is the cell temperature (K). On the other hand, irreversible 

heat arises from ohmic losses and polarization effects within the cell, mainly due to internal 

resistance to ion and electron transport. The total irreversible heat generation can be 

represented as: 

𝑄𝑖𝑟𝑟  =  𝐼2𝑅 (2) 

where 𝑅 denotes the total internal resistance of the cell (Ω). This includes ohmic, charge-

transfer, and mass transport resistances, which collectively contribute to polarization as 

shown in Figure 20. Polarization leads to a voltage deviation from the equilibrium potential 

during operation, further increasing heat generation under high current loads(Nazari & 

Farhad, 2017). The total heat generation rate in the cell, often referred to as the Bernardi 

equation, combines these components: 

𝑄𝑡𝑜𝑡𝑎𝑙  =  𝐼(𝑉 − 𝑈𝑜𝑐𝑣) −  𝐼𝑇
𝜕𝑈𝑜𝑐𝑣

𝜕𝑇
 

(3) 

Here, 𝑉 is the terminal voltage (V) and 𝑈𝑜𝑐𝑣  is open circuit voltage (V), which represents 

the equilibrium potential of the cell under no-load conditions. The first term represents 

polarization heat, while the second term captures entropy-related heat effects. This equation 

is widely used in thermal modelling of batteries, providing a reliable basis for designing 

BTMS (Jindal et al., 2022). 



 

 

Figure 20 Illustration of the model structure and heat generation sources in lithium-ion batteries (Nazari & Farhad, 
2017). 

2.1.2  Heat Transfer in LIBs 

LIBs are complex, heterogeneous systems in which electrochemical and thermal phenomena 

are strongly coupled. When considering heat transfer within these systems, the three primary 

mechanisms, conduction, convection, and radiation must be evaluated. Given the internal 

structure of LIBs, which predominantly consists of solid–solid and solid–liquid interfaces, 

heat conduction serves as the principal mode of internal heat transfer (Sun et al., 2025).  

If significant temperature gradients are anticipated within the lithium-ion cell, thermal 

modelling typically employs a form of the three-dimensional heat conduction equation, as 

shown in Equation (4). This approach is particularly relevant for scenarios such as safety 

simulations, pre-heating studies, and fast-charging investigations. In this context, the thermal 

conductivity directly influences the spatial and temporal distribution of the cell temperature, 

T, which is a function of both position (𝑥, 𝑦, 𝑧) and time 𝑡. Due to the layered structure of 

the electrode and separator stack, lithium-ion batteries exhibit anisotropic thermal 

conductivity, with distinct values in each Cartesian direction (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). Although 

Equation (4) is typically expressed in Cartesian coordinates, it can also be formulated in 



 

cylindrical coordinates (𝑟, 𝑧, 𝜑), which is often more appropriate for cylindrical cell 

geometries (Steinhardt et al., 2022). 

𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕
) +  

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕
) +  

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕
) +  𝑞′′′ 

(4) 

where 𝜌 is the average density of the battery, 𝐶𝑝 is the average specific heat capacity, 𝑞′′′ is 

the volumetric heat generation rate. 

If internal temperature gradients within the cell are negligible, typically indicated by a low 

Biot number, the lumped capacitance model, as presented in Equation (5), provides a suitable 

approach for modelling the cell temperature. In this simplified model, the temperature rise 

of the cell is primarily governed by its specific heat capacity and the heat dissipation, which 

together determine the amount of energy required to alter the cell’s temperature (Steinhardt 

et al., 2022). 

ρVcellCp

𝜕𝑇

𝜕𝑡
= 𝑞′′′Vcell − 𝑞𝑑𝑖𝑠𝑠 

(5) 

𝑞𝑑𝑖𝑠𝑠 =  𝑞𝑐𝑜𝑛𝑣 +  𝑞𝑟𝑎𝑑 (6) 

where the 𝑞𝑑𝑖𝑠𝑠 is heat dissipation that is combination of convection and radiation heat 

transfer and 𝑉𝑐𝑒𝑙𝑙 is the volume of the cell. Thermal convection and radiation are considered 

at the free boundary, as expressed in Equations (7) and (8). 

 

Figure 21 Illustration of Two Primary Heat Dissipation Mechanisms in a Battery Cell: Natural Convection and Thermal 
Radiation (Kovács et al., 2025). 

 



 

𝑞𝑐𝑜𝑛𝑣 = hA(𝑇 −  𝑇𝑎) (7) 

𝑞𝑟𝑎𝑑 =  εσ(𝑇4 − 𝑇𝑎
4)  (8) 

where ℎ is the natural convective heat transfer coefficient, 𝑇 represents the surface boundary 

temperature, 𝑇𝑎 is the ambient temperature, 𝜀 denotes the surface emissivity, and 𝜎 is the 

Stefan–Boltzmann constant. 

Natural convective heat transfer between the battery and the external environment occurs 

through the relative motion of a fluid, typically air or liquid, across the battery surface. This 

passive method of thermal dissipation is employed in large scale energy storage systems. 

The effectiveness of natural convection is influenced by several factors, including fluid 

velocity, temperature gradients, and thermophysical properties such as density, specific heat 

capacity, and thermal conductivity (Sun et al., 2025). 

When a fluid flows over a heated battery surface, higher flow velocities enhance heat 

removal. At a constant flow rate, a lower fluid temperature increases the temperature 

difference between the surface and the fluid, thereby improving convective heat transfer. 

Fluids with high specific heat capacity can absorb more heat, while those with high thermal 

conductivity are more effective in transporting it away from the surface (J. W. Han et al., 

2022). 

In addition to convection, thermal radiation also plays a role in heat dissipation, especially 

at higher operating temperatures. Radiation is a form of energy transfer that does not require 

a medium and occurs through electromagnetic waves emitted from the battery surface. The 

net radiative heat transfer depends on surface emissivity, surface temperature, and ambient 

temperature. Although radiation is generally less dominant compared to conduction and 

convection in lithium-ion batteries, its contribution becomes more significant at elevated 

temperatures due to its proportionality to the fourth power of temperature (Hatchard et al., 

2000). 

Convection can be further classified into natural and forced types, as illustrated in the Figure 

22 . Natural convection arises from buoyancy effects driven by density differences in the 

fluid, while forced convection is induced by external means such as fans or pumps. 

Compared to forced convection, natural convection typically exhibits lower heat transfer 

rates and limited temperature control (Sun et al., 2025). 



 

 

Figure 22 Illustration of (a) Forced Convection and (b) Natural Convection Mechanisms. 

2.1.3  Previous works on Cell Modelling  

The first comprehensive formulation for quantifying heat generation in electrochemical 

systems was presented by (Bernardi et al., 1985), who derived a general energy balance 

equation that accounted for reversible, irreversible, and mixing heat contributions within a 

unified thermodynamic framework. This model provided the theoretical foundation for 

analysing the thermal behaviour of batteries and continues to underpin contemporary electro-

thermal modelling approaches. Subsequently, (Doyle et al., 1993) extended this concept by 

developing the first pseudo-two-dimensional (P2D) electrochemical model for lithium-ion 

polymer cells. Their model coupled charge, mass, and energy conservation to predict spatial 

variations in potential, concentration, and temperature during galvanostatic cycling. 

Collectively, these pioneering works established the fundamental framework for integrated 

electrochemical–thermal modelling and have remained the cornerstone for subsequent 

advancements in battery system analysis. Building upon these foundational studies, a range 

of recent investigations have advanced battery thermal and electrochemical modelling 

through experimental validation and multi-dimensional simulation approaches. A summary 

of these representative studies is presented in Table 1, highlighting their key findings. 

 

 



 

Table 1 Recent Studies on Thermal and Electrochemical Simulation of Lithium-Ion Cells. 

Serial 

no. 
Author 

Battery 

Type 
Key Findings 

1 

(Paccha-

Herrera et 

al., 2020) 

Cylindrical 

26650 cell, 

LCO 

Compared three thermal modeling approaches 

under constant and dynamic discharges. All models 

agreed with experiments (max error ≈ 1.3 °C at 

1.5C). Lumped model provided reliable results with 

minimal computational cost, while coupled 

electrochemical–thermal model captured voltage 

and temperature fields most accurately. 

2 
(Al Hallaj et 

al., 1999) 

Cylindrical 

18650, 

LCO 

Developed and validated a 1D transient thermal 

model for Sony 18650 Li-ion cells using 

calorimetric data. The model accurately predicted 

temperature evolution at moderate C-rates and 

demonstrated a strong dependence of temperature 

rise on cooling rate. Thermal runaway was 

observed between 104–144 °C depending on state 

of charge, defining safety thresholds for larger-scale 

cell designs. 

3 
(U. Han & 

Lee, 2022) 

Cylindrical 

21700, 

NMC  

The proposed inverse heat transfer analysis (IHTA) 

method was validated under discharge rates ranging 

from 0.25C to 2.0C, demonstrating excellent 

agreement with experimental data (≈1% error) and 

confirming its reliability in predicting temperature 

evolution across varying load conditions. 

4 
(Bahiraei et 

al., 2017) 

Prismatic 

Cell, NCA 

Developed a pseudo-3D electrochemical–thermal 

model coupling 1D electrochemical and 3D heat 

transfer equations to simulate temperature evolution 

in an NCA prismatic cell. The model accurately 

predicted cell temperature within 4% deviation 

from experiments and demonstrated increasing 

temperature with discharge rate, reaching 39.7 °C at 

3C under safe operating limits. 

5 
(Xie et al., 

2018) 

Pouch 

Single 

Cell, LTO 

A combined experimental and analytical study 

developed a transient heat-generation model under 

air cooling. Higher C-rates and lower ambient 

temperatures increased heat generation and 

temperature rise. The model accurately predicted 

cell temperature (with less than 2% error), 

confirming discharge produced more heat than 

charge and overdischarge caused sharp temperature 

rise. 



 

Table 1 Continued. 

6 
(M. Chen et 

al., 2020) 

Cylindrical 

18650 

cells, 

NMC and 

LFP 

Conducted charge–discharge experiments at 1C–2C 

comparing natural convection, PCM, and PCM-fin 

cooling. PCM cooling reduced NMC cell 

temperature by 4.7 °C at 1C and 12.8 °C at 2C, 

while LFP cells showed smaller drops 

(approximately 2 °C). The method effectively 

stabilized temperature and preserved capacity under 

higher C-rates. 

7 
(Q. Wu et 

al., 2023) 

Cylindrical 

21700, 

NCA 

Measured anisotropic thermal conductivity and heat 

capacity, then established a 2D axisymmetric 

thermal model using HPPC-derived resistance and 

entropy data. The model accurately predicted core 

and surface temperatures (with less than 1.5 °C 

deviation) under 1C–2C discharge. Core 

temperature reached 60 °C at 2C with 

approximately 3 °C internal gradient, validating the 

model’s reliability for real-cell thermal behavior. 

8 (Jeon, 2014) 

Cylindrical 

18650, 

LCO 

Developed a coupled electrochemical–thermal 

model combining porous-electrode and transient 

heat-transfer formulations to predict temperature 

evolution of a cell. The model accurately 

reproduced experimental trends, showing higher 

discharge temperatures (approximately 50 °C at 2C) 

and a transition from entropic to Joule-dominated 

heating with increasing C-rate. 

9 
(Shi et al., 

2022) 

Cylindrical 

18650, 

LFP 

Developed a lumped thermal characteristic model 

coupled with the Bernardi equation to estimate 

internal temperature online. Introduced an adaptive 

forgetting-factor recursive least squares – joint 

Kalman filter for co-estimation of internal 

temperature and external thermal resistance. 

Experimental validation under HPPC, Beijing bus 

dynamic stress test BBDST, and full-cycle tests 

showed high accuracy with a maximum RMSE of 

0.53 °C, confirming robustness for real-time battery 

management applications. 
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10 
(Özdemir et 

al., 2021) 

Cylindrical 

18650, 

NCA 

A coupled electrochemical–thermal model was 

developed to solve mass, charge, and heat-transfer 

equations incorporating a variable convective 

coefficient. Experimental validation under 0.5C–

1.5C discharges demonstrated excellent agreement 

with measured data (with less than 1 °C and 0.11 V 

RMSE). The model effectively captured mandrel-

induced temperature gradients while confirming 

nearly uniform thermal behavior at low C-rates. 

11 
(Mevawalla 

et al., 2020) 

pouch cell, 

LFP 

A pseudo-three-dimensional electrochemical–

thermal model was developed by coupling one-

dimensional electrochemical and three-dimensional 

heat-transfer equations to simulate a 5 Ah NCA 

prismatic pouch cell. The model demonstrated 

strong agreement with experimental data (with less 

than 4 % deviation) and accurately captured the 

temperature rise with increasing discharge rate, 

reaching 39.7 °C at 3C while remaining within the 

safe operational range. 

12 
(Abbas et 

al., 2024) 

Pouch cell, 

NMC 

A three-dimensional lumped thermal model based 

on a resistance-network approach was developed 

and validated against a detailed finite-element 

model for a single NMC pouch cell. The model 

accurately reproduced both transient and steady-

state temperature evolution under 1C–5C 

discharges, achieving less than 0.5 °C deviation 

from FEM predictions while reducing 

computational time from six hours to approximately 

three seconds. 

2.2  Battery Module Modelling  

A lithium-ion battery module is an assembly of interconnected cells configured to deliver 

higher voltage and capacity than a single cell. Modules are typically designed with integrated 

thermal management features to maintain the temperature within safe operational limits, 

thereby enhancing reliability and safety. In addition, BMSs are often incorporated at the 

module level to monitor parameters such as cell voltage and temperature, enabling active 



 

balancing and performance optimization. This not only improves overall system efficiency 

but also contributes to prolonging the battery's service life (Shinde et al., 2023). 

 

Figure 23 Battery Module Configured in a 3P4S Arrangement(Avik, 2024). 

2.2.1  Previous works on Module Modelling 

The earliest systematic investigations into battery pack thermal behaviour were conducted 

at the national renewable energy laboratory (NREL) in the late 1990s. (Pesaran & Burch, 

1997) made a pioneering contribution by presenting one of the first comprehensive analyses 

of the thermal performance of EV and HEV battery modules and packs. Their work 

combined fundamental heat transfer modelling with finite element simulations to assess 

temperature evolution within lead–acid modules and across multi-module pack assemblies. 

The study demonstrated how internal heat generation, module geometry, airflow 

configuration, and casing thermal conductivity influence temperature gradients at the pack 

level. Importantly, it highlighted that inadequate thermal design can lead to temperature non-

uniformity, accelerated aging, and electrical imbalance among cells and modules, 

emphasizing the necessity of dedicated battery thermal management systems. 

Building on this foundation, (Pesaran, 2002) introduced one of the earliest lumped-

capacitance thermal models for battery pack analysis within NREL’s ADVISOR vehicle 

simulation platform. This work enabled prediction of battery temperature evolution under 

realistic drive-cycle conditions and linked thermal behaviour to electrochemical 

performance indicators such as internal resistance, available power, and efficiency. 



 

Additionally, 2D and 3D finite element analyses were used to explore pack-level airflow 

configurations, revealing that parallel airflow architectures offer markedly improved 

temperature uniformity compared to series configurations. Collectively, these studies laid 

the groundwork for modern approaches to battery pack thermal modelling. 

Table 2 summarises recent studies on lithium-ion battery pack modelling, highlighting the 

cell chemistries employed and the key findings of each work. 

Table 2 Recent Studies on Thermal and Electrochemical Modelling of Lithium-Ion Battery Module. 

Serial 

no. 
Author 

Battery 

Type 
Key Findings 

1 
(Wang et al., 

2025) 

6 

Prismatic 

cells, LFP 

Using a thermoelectric coupling model, the 

study analyzed airflow direction, intake 

velocity, and cell arrangement in a six-cell 

prismatic LFP pack. Aligning airflow with cell 

length improved cooling, while staggered 

arrangements reduced local hotspots. An 

optimal configuration (10 mm staggered 

distance, 5 mm spacing) lowered maximum 

temperature by 0.5% and temperature 

difference by 4.2%, demonstrating enhanced 

cooling and improved uniformity. 

2 
(Abbas et al., 

2024) 

10 Pouch 

cells, 

NMC 

Proposed a low-computational 3D lumped 

thermal model that captures thermal 

interactions between cells, tabs, and insulation 

layers. The model closely matched FEM 

predictions with a maximum deviation of 

approximately 0.42 °C while reducing 

computational time from 21 h (FEM) to 6 s for 

a 10-cell module. Results demonstrated 

accurate temperature prediction for both single-

cell and multi-cell modules across discharge 

and periodic cycling conditions. 
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3 

(Mangaiyarkarasi 

& Jayaganthan, 

2024) 

12 

cylindrical 

cells of 

21700, 

NMC 

Developed a 3D electrochemical–thermal 

model using the P2D framework to evaluate 

heat generation, dissipation, and life span of a 

6s2p pack with multiple cathode chemistries 

under air cooling. The NMC pack achieved the 

best thermal stability with an optimal 

temperature range of 21.3–32.8 °C, maximum 

heat dissipation of 102.5 W, and SOC/SOH 

retention of 100%/80%. Despite faster capacity 

fade, NMC chemistry provided superior heat 

management and operational efficiency 

compared with LCO, LFP, and LMO systems. 

4 
(J. W. Han et al., 

2022) 

16 

cylindrical 

cells of 

18650, 

NMC 

Conducted experimental and numerical 

evaluation of a liquid-cooled 4S4P NMC pack 

under 1C–4C discharges. The system 

maintained cell temperatures below 40 °C, and 

the chiller-assisted configuration improved 

temperature uniformity by up to 35%. Model–

experiment agreement was within 2 K, 

confirming the accuracy of the thermal 

predictions and the effectiveness of the pack’s 

symmetrical cooling design. 

5 

(M. K. Tran, 

Mathew, et al., 

2021) 

5 pouch 

cells, LFP 

Developed a Thevenin-based equivalent circuit 

model that incorporates the effects of state of 

charge, state of health, and temperature on 

model parameters. Experimental validation 

demonstrated an RMSE below 20 mV and a 

MAPE below 0.5%, representing 

approximately a 50% improvement in voltage 

prediction accuracy compared to conventional 

models and confirming its suitability for real-

time battery management applications 

6 
(F. Chen et al., 

2020) 

16 

cylindrical 

cells of 

26650, 

LFP 

Compared air and PCM cooling under an HEV 

load profile. Air cooling kept temperatures 

within safe limits but showed higher non-

uniformity, whereas PCM cooling achieved 

excellent uniformity (ΔT < 0.4 °C) but 

increased mean temperature and reduced cycle 

life. Overall, air cooling was found to be more 

cost-effective and durable when considering 

thermal performance and ageing. 
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7 
(K. Li et al., 

2018) 

16 

cylindrical 

cells of 

18650, 

NMC 

Demonstrated that water-pipe cooling 

significantly improves pack thermal behavior 

under dynamic CC–CV cycling. Simulation 

closely matched experiments, with deviations 

mainly attributed to constant thermo-physical 

parameters and neglected contact resistance. 

Water cooling maintained safe temperatures at 

low C-rates, while PCM became more effective 

at high C-rates. Results indicate that a hybrid 

PCM–water system offers optimal performance 

across varying load conditions. 

8 
(Yang et al., 

2015) 

60 

cylindrical 

cells of 

18650, 

LFP  

Developed and validated a coupled 

electrochemical–thermal model to investigate 

forced air-cooling in aligned and staggered 

cylindrical-cell packs. Results showed that 

increasing longitudinal spacing reduced 

maximum temperature but increased power 

demand, while larger transverse spacing 

improved uniformity but raised average 

temperature. The optimized aligned 

configuration (Sx = 34 mm, Sy = 32 mm) 

achieved balanced cooling performance with 

minimal temperature non-uniformity. 

9 
(Jaguemont et 

al., 2016) 

4 

Prismatic 

cells, LFP 

Developed a coupled electro-thermal model for 

prismatic LFP cells and a 4-cell pack, validated 

from –20 °C to 25 °C with approximately 3% 

error. The model accurately captured voltage 

behavior, energy loss, and self-heating at low 

temperatures, and reproduced pack-level non-

uniformity with higher temperatures in inner 

cells. 

10 
(Basu et al., 

2016) 

30 

cylindrical 

cells of 

18650, 

NCA 

Developed a 3D coupled electrochemical–

thermal model for a liquid-cooled 6S5P NCA 

pack. Experimental validation showed 

approximately 90% accuracy with less than 1 K 

deviation, while the proposed design 

maintained temperature rise below 7 K at 2.7C, 

ensuring compactness and high thermal 

uniformity. 

 



 

3  Characterization Methods 

In this master’s thesis, the experimental investigations were carried out on a commercial 

cylindrical lithium-ion cell in the 21700 format with NCA chemistry and a nominal capacity 

of 4.5 Ah. The key specifications of the cell are listed in Table 3. Further analysis of the cell 

required measurement of the open circuit voltage and the implementation of charge–

discharge cycling under controlled loading conditions, which will be presented in the 

following sections. 

To perform the experimental measurements, a Neware battery cycler Model BTS-4000 was 

used. A battery cycler is an essential instrument that enables the controlled application of 

current and the simultaneous measurement of voltage in electrochemical cells. In practice, 

the cycler allows the operator to define charging and discharging protocol, apply the required 

current with high precision, and continuously record the corresponding voltage response of 

the cell. In addition, the cycler actively monitors both current and voltage in real time, 

ensuring accurate execution of test profiles and reliable data acquisition. 

Table 3 Technical Specifications of the Lithium-Ion Cells Used in This Study 

No. Particulars Values 

1 Brand Name Molicel 

2 Model Name INR-21700-P45B 

3 Capacity (Typical) 4500 mAh 

4 Cell Voltage  

3.6 V (Nominal) 

4.2 V (Charge) 

2.5 V (Discharge) 

5 Charge Current  
4.5 A (Standard) 

13.5 A (Maximum) 

6 Discharge Current 45 A (Continuous) 

7 Operating Temperature  
0°C to 60°C (Charge) 

-40°C to 60°C (Discharge) 

8 Shape Cylindrical 

9 Diameter 21.55 mm 

10 Height 70.15 mm 

11 Weight 70 g 

 

In this work, the Neware BTS-4000 was employed to conduct both OCV characterization 

and dynamic cycling tests. 



 

 

Figure 24 Single-cell testing was conducted using the Neware battery cycler(Avik, 2024). 

3.1  Open Circuit Voltage (OCV) Measurements 

The OCV of a cell is a static function of its state of charge (SOC) and temperature, whereas 

most other aspects of cell performance are dynamic in nature. Therefore, separate 

experiments are required to characterize the OCV–SOC relationship and the cell’s dynamic 

behaviour. To determine the OCV profile, the general procedure is as follows: the cell is first 

fully charged, then discharged at a very low current to the minimum operating voltage while 

continuously monitoring both the terminal voltage and the cumulative ampere-hours 

discharged. Subsequently, the cell is recharged, again at a very low current, to its maximum 

operating voltage, with voltage and charge data recorded throughout the process. This slow 

charge–discharge cycle ensures that the voltage approximates the true equilibrium OCV at 

each SOC point (Plett, 2015). 

The slow charge–discharge rate is intended to minimize excitation of the cell’s dynamic 

behaviour and maintain a quasi-equilibrium state throughout the test. While a C/30 rate is 

commonly used as a compromise between equilibrium accuracy and test duration, a C/50 

rate was employed in this study to further reduce transient effects (Petzl & Danzer, 2013). 

Based on Figure 18, the terminal voltage can be expressed as Equation (9),  

𝑈𝑡 = 𝑅0𝐼 +  ∑ 𝑅𝑖𝐼𝑒𝑥𝑝(−𝑡/𝜏𝑖)

𝑖

+  𝑈𝑜𝑐𝑣 

 

(9) 

Here, 𝑅0 represents the ohmic resistance, and 𝜏 is the time constant defined as the product 

of resistance and capacitance in the equivalent RC circuit. Therefore, by reducing the 

current, the first two terms on the right-hand side of Equation (9) can be neglected. 



 

OCV profiles obtained during charging and discharging differ due to voltage hysteresis, 

which arises from thermodynamic asymmetry, kinetic polarization, and structural changes 

in the electrode materials. As a result, the OCV is not a single-valued function of the SOC, 

with the charging OCV typically appearing higher than the discharging OCV at the same 

SOC. To maintain consistency in modelling, an averaged OCV–SOC curve is commonly 

used to suppress hysteresis-related variations and provide a smooth, single-valued 

relationship suitable for equivalent-circuit and electrochemical models (Barai et al., 2015; 

H. Feng et al., 2021). 

To obtain a unified OCV curve from both charging and discharging data, two methods were 

employed. The first is the conventional approach, referred to as the averaged-OCV at 

constant-SOC method (Bussios et al., 2024). As illustrated in Figure 25, this method requires 

averaging between points B and C, which represent the OCV values from the discharge and 

charge cycles, respectively. The second approach, known as the averaged-SOC at constant-

OCV method (Ning & Zhang, 2015), involves averaging between points A and B, which 

correspond to the SOC values from the charge and discharge cycles, respectively.  

 

Figure 25 Schematic Representation of OCV Calculation Using Two Different Methods. 

 

As previously noted, the OCV is also a function of temperature, and in Section 2.1.1 , we 

introduced the concept of reversible (entropic) heat. To evaluate the entropic heat coefficient 

in a lithium-ion battery, charge and discharge experiments were conducted at different 

temperatures using a low current rate of C/50 (Hua et al., 2023). The slope of this linear fit 

at each SOC point corresponds to the entropic heat coefficient which quantifies the reversible 
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heat contribution. This analysis was repeated for multiple SOC levels to obtain a full profile 

of the entropic heat coefficient as a function of SOC. 

For this experimental procedure, a Gamry Reference 3000 potentiostat was employed to 

precisely regulate the applied current and voltage throughout the measurements. In parallel, 

a Weiss climate chamber was utilized to ensure a stable and well-controlled ambient 

temperature, thereby minimizing external thermal disturbances and enabling consistent test 

conditions. 

3.2  Cycling 

The looped cyclic charge and discharge test was conducted using the Neware BTS 8.0. The 

cells were cycled using a constant current–constant voltage (CC–CV) charging protocol 

followed by a constant current (CC) discharging protocol at various C-rates. After each 

charge and discharge step, a 30-minute rest period was implemented to allow the cell’s 

voltage and temperature to stabilize before proceeding to the next cycle. The temperature of 

each cell during cycling was measured using a PT100 sensor, which provides an accuracy in 

the range of ±0.1 to ±0.3 °C (Kako, 2023). To verify the thermal model under different 

operating conditions, three C-rates were selected. A 0.5C rate represents mild cycling with 

limited heat generation, serving as a baseline for model accuracy under low-stress 

conditions. The 1C rate corresponds to nominal operation, often used as a benchmark in both 

experiments and simulations. Finally, the 2C rate reflects an extreme scenario with 

significantly higher heat generation and thermal gradients, testing the robustness of the 

model under aggressive cycling. This range of C-rates is commonly adopted in battery 

studies to cover realistic usage as well as worst-case conditions (Kako, 2023; Patel et al., 

2025). A comprehensive summary of the cycling parameters is presented in Table 4. 

 

 

 



 

Table 4 Cycling Protocol for Different C-rates 

                      C-rate 

Parameters 

 

0.5C 

 

1C 

 

2C 

Charging Current (A) 2.25  4.5 9 

Charging Voltage cut-off (V) 4.2 4.2 4.2 

Charge Current Cut-off after CV 

charge (mA) 

50  50  50  

Rest Period (s) 1800 1800 1800 

Discharge Current (A) -2.25 -4.5 -9 

Discharge Voltage Cut-off (V) 3.0 3.0 3.0 

Rest Period (s) 1800 1800 1800 

Number of Cycles tested 2 2 2 

3.3  Heat Transfer Coefficient Measurement 

To characterize the overall heat transfer coefficient ℎ of the battery cell, a dedicated cooling 

experiment was conducted. Estimating ℎ through empirical correlations was considered 

impractical, as convective and radiative heat losses are influenced by various factors, 

including ambient temperature, airflow conditions, cell geometry, and surface properties that 

are difficult to capture accurately with standard models. Instead, ℎ was determined by 

analyzing the battery’s cooling behaviour following a charge cycle. In the experiment, the 

cell was charged using CC charging and then left to cool in a quiescent environment. 

Throughout this cooling period, two thermocouples were used to continuously monitor the 

ambient air temperature, while a third thermocouple, affixed to the cell surface using thermal 

paste to ensure good thermal contact, measured the cell temperature. This setup ensured that 

the recorded temperature decay was predominantly governed by natural convection and 

radiation to the surroundings, allowing for a reliable estimation of the overall heat transfer 

coefficient (U. Han & Lee, 2022). 



 

During the rest period, when no electrochemical reactions take place, the thermal behaviour 

of the cell can be described by a simplified energy balance. The general form of the energy 

conservation equation for the cell is given in Equation (5). Once the discharge ends, the 

volumetric heat generation term becomes negligible, and the temperature decay is governed 

solely by heat dissipation. This heat loss is modelled using Newton’s law of cooling, 

incorporating convection as expressed in Equations (6)-(8). Substituting these terms into the 

energy balance yields a first-order differential equation that describes the cell temperature 𝑇 

during the cooling phase. 

ρVcellCp

𝜕𝑇

𝜕𝑡
= − hA(𝑇 − 𝑇𝑎) 

(10) 

This differential equation describes how the cell temperature decays toward the ambient 

temperature due to heat loss. All quantities in Equation (10) are known or measurable except 

for ℎ, which must be determined. The cell’s mass was known, and area was calculated from 

the cell geometry and the value for specific heat was taken from (Murashko et al., 2020). 

Thus, ℎ was treated as an unknown parameter to be extracted from the cooling data. To 

estimate ℎ,an inverse heat transfer analysis was carried out by fitting the model to the 

measured cooling curve. By manipulating the governing equations, the following expression 

is obtained: 

𝑇𝑎 −  𝑇 = (𝑇𝑎,0 −  𝑇0)𝑒−
𝑡
τ 

(11) 

𝜏 =  
mCp

hA
 

(12) 

where 𝜏 is the time constant and 𝑇𝑎,0 and 𝑇0 ambient and cell temperature, respectively. 

3.4  Calorimetric Cycling Experiments 

An isothermal calorimeter was used to precisely measure the total heat generation of the 

lithium-ion cell during charge–discharge cycling. This method allows direct quantification 

of both reversible and irreversible heat, ensuring accurate evaluation of the cell’s thermal 

behaviour. As shown by (Nazari & Farhad, 2017), conducting measurements under constant 

temperature conditions using an isothermal calorimeter minimizes external temperature 

effects and provides reliable data for validating thermal models and improving battery 

thermal management systems. 



 

The calorimetric cycling experiments were conducted using a Thermal Hazard Technology 

(THT) IBC-PL Isothermal Battery Calorimeter, integrated with a Huber MPC Minichiller 

600 temperature control unit. The IBC-PL is specifically designed to study the thermal 

behaviour of pouch and prismatic lithium-ion cells under strictly controlled isothermal 

conditions. The calorimeter quantifies the heat generated by the cell through precise 

measurement of the temperature differential between two parallel plates, one fixed and one 

adjustable, thermally connected to a heat-sink block via a calibrated thermal resistance plate. 

The heat produced by the cell induces a proportional temperature difference across these 

plates, which is continuously monitored to calculate the corresponding heat flow. 

A Huber Minichiller 600 circulated thermostated fluid through the calorimeter jacket to 

maintain the chamber temperature at a fixed set point of 30 °C, ensuring stable isothermal 

operation as described in the manufacturer’s documentation. The cell was positioned 

centrally between the measurement plates, and good thermal contact was ensured using the 

recommended clamping procedure and a thin thermal interface layer. 

To perform the charge–discharge cycling, a Chroma 17011 battery cell tester was connected 

to the calorimeter via the electrical feedthroughs provided on the instrument. The tester 

supplied controlled current and voltage profiles while the calorimeter simultaneously 

recorded the associated heat generation. Data acquisition was carried out using both the THT 

Control Software and Battery Pro Software: the former recorded heat-flow data, whereas the 

latter collected voltage, current, and cell temperature data. Figure 26 illustrates a schematic 

representation of the calorimeter setup. 

 

Figure 26 Schematic representation of the calorimeter setup. 

This integrated setup enables accurate quantification of total, reversible, and irreversible heat 

generation during dynamic cycling of pouch and prismatic lithium-ion cells under well-



 

defined isothermal conditions. However, the calorimeter used in this study was not originally 

intended for cylindrical cells, which introduces additional uncertainty in the measurements. 

The cylindrical 21700 cell establishes only a narrow line of contact with the flat calorimeter 

plates, leading to higher and non-uniform thermal contact resistance; as a result, part of the 

generated heat may dissipate laterally or through pathways that bypass the calibrated heat-

flux sensors. Small air gaps between the curved surface and the plates further increase 

uncertainty, and although the calorimeter maintains an isothermal boundary, it cannot 

compensate for these geometry-dependent deviations in heat-flux distribution. 

4  Single Cell Modelling 

To translate the developed single-cell thermal model into a practical simulation framework, 

a computational platform was required that could efficiently handle nonlinear, time-

dependent equations and allow for flexible integration of experimental data. MATLAB® 

was selected for this purpose due to its widespread use in battery modelling, its robust 

numerical solvers for differential equations, and its built-in tools for data processing and 

visualization. Moreover, MATLAB enables straightforward integration of experimental 

inputs such as open-circuit voltage (OCV), entropic heat coefficients, and specific heat 

capacity into the model, while providing flexibility to test different boundary conditions and 

cycling profiles. These capabilities make MATLAB an appropriate choice for implementing 

the thermal model, ensuring both computational efficiency and reproducibility of results (Y. 

Liu, 2025). 

4.1  MATLAB Implementation  

The single-cell thermal model was implemented in MATLAB® R2024b to simulate the 

temperature evolution of the lithium-ion cell during charge and discharge cycles. The 

governing equations, presented in the section 2.1 , are derived from the Bernardi equation, 

which accounts for both irreversible heat generation and reversible entropic contributions, 

as expressed in Equation (13). To numerically solve the coupled first-order differential 

equations describing the cell’s thermal dynamics, the ode45 solver was employed. This 

solver uses an adaptive Runge–Kutta method, providing an optimal balance between 



 

computational efficiency and numerical accuracy, making it particularly suitable for 

problems involving nonlinear temperature-dependent parameters (Álvarez et al., 2021). 

mCp

𝜕𝑇

𝜕𝑡
= (𝑉 − 𝑂𝐶𝑉 − 𝑇

𝜕𝑈𝑜𝑐𝑣

𝜕𝑇
) 𝐼 −  hA(𝑇 −  𝑇𝑎) 

(13) 

The model input parameters consisted of the experimentally measured OCV, the entropic 

heat coefficients, and the specific heat capacity reported by (Auch et al., 2023). These 

parameters were integrated into MATLAB scripts to evaluate transient thermal responses 

under different C-rate profiles. Additionally, the implementation was structured to allow 

flexible configuration of boundary conditions, enabling the inclusion of various convective 

heat transfer coefficients and ambient temperature settings. By rearranging Equation (13), 

ℎ𝐴 can be eliminated, allowing the thermal behavior to be expressed in terms of a lumped 

time constant. As discussed in Section 3.3 , this simplification enables the model to be 

reformulated using the thermal time constant, 𝜏, facilitating a more compact and practical 

implementation for parameter estimation and simulation. 

𝜕𝑇

𝜕𝑡
=

(𝑉 − 𝑂𝐶𝑉 − 𝑇
𝜕𝑈𝑜𝑐𝑣

𝜕𝑇
) 𝐼 −

mCp

τ
(𝑇 −  𝑇𝑎)

mCp
 

(14) 

The voltage, current, and temperature data are time-dependent variables. To simulate them 

in MATLAB, an interpolation function was required to align the datasets with a uniform 

time interval. For this purpose, the built-in one-dimensional interpolation function “interp1” 

was employed. 

To compare the OCV and terminal voltage by evaluating their difference, it was first 

necessary to determine the SOC for each data point. The SOC was tracked using the 

coulomb-counting method during both the charge and discharge cycles. Because the cells 

were allowed to rest at the end of each cycle, the voltage relaxed toward equilibrium, 

enabling the final SOC of each rest period to be used as the initial SOC for the subsequent 

cycle. This approach ensured a consistent and accurate SOC reference throughout the entire 

dataset. 

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 + ∫
𝐼(𝑡)

Cn
𝑑𝑡 

(15) 

Where 𝑆𝑂𝐶0 is the initial SOC and Cn is the nominal capacity of the cell. 



 

4.2  Error Analysis 

To evaluate the accuracy of the thermal model and its agreement with the experimental 

measurements, two common error metrics are used: the Root Mean Square Error (RMSE) 

and the error percentage. These indicators quantify the deviation between simulated and 

measured values and provide an objective measure of model performance. 

4.2.1  Root Mean Square Error (RMSE) 

RMSE is a widely used statistical metric that expresses the average magnitude of the error 

between predicted and observed values. It is calculated as: 

𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑(𝑇𝑠𝑖𝑚 − 𝑇𝑒𝑥𝑝)2

𝑛

1

 

(16) 

Where 𝑇𝑠𝑖𝑚 is the simulated value, 𝑇𝑒𝑥𝑝 is the corresponding experimental value, and n is 

the total number of data points. 

RMSE places a higher weight on larger deviations due to the squared error term, making it 

sensitive to peak differences or rapid transitions in the dataset. A lower RMSE indicates 

better agreement between simulation and experiment (Chai & Draxler, 2014). 

4.2.2  Error Percentage 

Error percentage provides a normalized measure of deviation relative to the magnitude of 

the reference (experimental) value. It is often calculated using absolute error: 

𝐸𝑟𝑟𝑜𝑟(%) = (
|𝑇𝑠𝑖𝑚 − 𝑇𝑒𝑥𝑝|

𝑇𝑒𝑥𝑝
) × 100 

 

(17) 

This metric expresses the error in percentage terms, allowing the performance to be assessed 

independently of the scale of the measured variable. It is particularly useful when comparing 

different operating conditions or datasets with varying magnitudes (Kim & Kim, 2016). 



 

5  Results 

This chapter summarises the key experimental findings and modelling outcomes of this 

work. It begins with the identification of parameters required for the thermal model, followed 

by the characterisation of cell voltage behaviour and temperature-dependent properties. The 

latter part of the chapter evaluates the model performance under different C-rate conditions 

and compares the predicted heat generation with calorimetric measurements. Together, these 

results provide the basis for assessing the accuracy and applicability of the developed 

thermal model. 

5.1  Heat Transfer Coefficient 

To assess the repeatability of the measurement procedure, the experiment was performed 

independently on two separate cells. As shown in Figure 27, the ΔT decay profiles of both 

cells exhibit very similar behaviour, and the fitted exponential curves overlap closely across 

the entire time range. The extracted time constant for both cells is approximately τ =  500 s, 

demonstrating a high level of consistency between the two measurements and confirming 

the reliability of the experimental setup. 



 

 

Figure 27 Fitted Cooling Curve from Experimental Data. 

5.2  Reference OCV Measurements 

Figure 28 presents the OCV–SOC relationship for both the charging and discharging paths. 

A distinct voltage hysteresis is observed across most of the operating range. At low SOC, 

the charging OCV is noticeably higher than the discharging OCV, with the difference 

gradually diminishing toward mid-SOC. Between approximately 40–90% SOC, the two 

curves nearly converge, after which a small separation becomes visible again as the cell 

approaches full charge. Overall, the OCV–SOC profiles remain smooth for both directions, 

with the charging trajectory consistently exhibiting slightly higher voltages than the 

discharging trajectory throughout the entire SOC window. 
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Figure 28 OCV as a Function of SOC for Both Charging and Discharging Processes. 

Figure 29 compares the OCV–SOC profiles obtained using the Averaged-OCV at Constant-

SOC method and the Averaged-SOC at Constant-OCV method. Both methods produce 

nearly identical OCV curves, following the same smooth and monotonically increasing trend 

across the entire SOC range. The two profiles overlap closely throughout most of the 

window, with only minor deviations appearing at very low SOC (0–30%). These differences 

remain small, and the overall shape and magnitude of the OCV–SOC relationship are 

consistent between the two approaches, indicating that both methods provide a comparable 

representation of the cell’s OCV–SOC relationship. 

 

Figure 29 Two Different Methods for Obtaining a Unified OCV Curve. 
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5.3  OCV at Different Temperature Measurements 

The experiments were conducted at three temperatures: 23 °C, 30 °C, and 40 °C. However, 

during the OCV measurement at 30 °C, an unexpected issue occurred, rendering the 

corresponding dataset unreliable for use in the simulations. As shown in Figure 30, the 

measured values at 30 °C deviate markedly from the consistent trends observed at 23 °C and 

40 °C. 

 

Figure 30 Comparison of OCV–SOC Curves Measured at 23 °C, 30 °C, and 40 °C. 

5.4  Entropic Heat Coefficient 

Figure 31 presents the entropic heat coefficient (EHC) as a function of SOC for both the 

charging and discharging paths, including the experimentally measured curves and the 

reference data extracted from (Friedrich et al., 2022). The experimental charging and 

discharging curves show clear directional asymmetry, with the charging EHC remaining 

close to zero and mostly negative across the SOC range, aside from a sharp rise at very low 

SOC. In contrast, the discharging curve exhibits a much wider variation, reaching more 

negative values at low SOC, becoming positive between roughly 40–90% SOC, and showing 

a steep increase near full charge. Overall, the discharging path displays consistently larger 

absolute values, and the two experimental profiles do not overlap. The reference curves from 
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Friedrich show significantly smaller magnitudes and smoother behaviour, remaining mostly 

negative and only becoming slightly positive at high SOC. 

 

Figure 31 Charging vs. discharging entropic heat coefficient (EHC), including experimentally measured data and 
reference EHC from (Friedrich et al., 2022). 

The entropic heat coefficient (EHC) represents the reversible heat exchange associated with 

lithium intercalation and deintercalation. In a fully reversible electrochemical system, the 

EHC profiles obtained during charging and discharging would be identical, as the underlying 

entropy change is thermodynamically the same in both directions. However, numerous 

studies have reported that the charge and discharge EHC curves do not coincide in practical 

lithium-ion systems (Bernardi et al., 1985; Zilberman et al., 2018). This asymmetry is 

typically attributed to electrode hysteresis, kinetic polarization, and path-dependent entropy 

variations. These effects are especially pronounced at low and high SOC, where phase 

transitions, staging phenomena, and non-ideal solid-solution behaviour occur (Assat et al., 

2019). As a result, although symmetric EHC curves would indicate perfectly reversible 

thermodynamics, the asymmetry observed in the literature reflects the intrinsic irreversibility 

of real lithium-ion cells. 
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5.5  Charge-discharge cycling 

In this section, the results corresponding to the 0.5C, 1C, and 2C cycling rates are presented. 

The temperature figures in this section report the temperature rise (ΔT), whereas the absolute 

temperature profiles for each operating condition are provided in Appendix 1. 

5.5.1  Results at 0.5C-Rate 

Figure 32 shows the voltage and current profiles for the 0.5C-rate cycle. At this low C-rate, 

the constant-current (CC) charging period lasted approximately 6224 s, followed by a CC 

discharging period of 6519 s. After the discharge current was cut off, the cell exhibited a 

voltage relaxation of ΔV ≈  130 mV, reflecting the decay of ohmic and concentration 

overpotentials toward the equilibrium OCV.  

 

Figure 32 Experimental Voltage and Current Profiles at 0.5C-Rate. 

Figure 33(a) presents the simulated and experimental cell–ambient temperature difference 

(ΔT) for the 0.5C-rate cycle using both OCV-processing approaches. The Averaged-OCV at 

Constant-SOC method resulted in an RMSE of 0.57 K and a maximum error of 5.1%, 

yielding a peak simulated ΔT of 3.1 K during discharge. In contrast, the Averaged-SOC at 

Constant-OCV method improved the agreement with the experimental data, reducing the 

RMSE to 0.47 K and the maximum error to 5.03%, while producing the same peak simulated 
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ΔT of 3.1 K. The maximum experimental ΔT reached 3.25 K, which provides the reference 

level for evaluating model fidelity under low C-rate conditions. As expected, the temperature 

rise during discharge is higher than during charge, with an average peak difference of 0.72 

K between the charging and discharging phases of each cycle. 

Figure 33(b) presents the simulation results obtained when the entropic heat coefficient 

(EHC) is included in the model. Incorporating the EHC leads to an increase in the RMSE to 

1.75 K, which can be attributed to uncertainties in the experimental EHC measurements. The 

largest deviations occur at the beginning of both the charging and discharging steps, where 

the EHC is highly sensitive to the state of charge. As discussed in Section 5.4 , the 

experimentally determined EHC values are higher than the reference values reported in the 

literature. Because the entropic heat contribution is directly proportional to the EHC, this 

discrepancy propagates through the model and results in the observed differences in the 

predicted temperature profiles. 
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(b) 

Figure 33 Illustration of the Simulated and Experimental Cell–Ambient Temperature Difference (ΔT) with the Applied 
Current Profile at 0.5C-Rate: (a) Excluding the EHC and (b) Including the EHC. 

5.5.2  Results at 1C-Rate 

Figure 34 presents the voltage and current behaviour at a 1C-rate cycle. Under this nominal 

operating condition, the constant-current (CC) charging period lasted approximately 2999 s, 

and the CC discharging period lasted 3235 s. After the discharge phase, the voltage 

recovered by ΔV ≈  160 mV, indicating a stronger relaxation effect compared with the 0.5C 

case due to increased polarization. 

 

Figure 34 Experimental Voltage and Current Profiles at 1C-Rate. 
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Figure 35(a) presents the ΔT comparison for the 1C-rate cycle. As expected, increasing the 

current results in a higher temperature rise and greater sensitivity to the selected OCV 

averaging methods. Using the Averaged-OCV at Constant-SOC method, the RMSE 

increased to 1.14 K and the maximum error to 10.12%, with a peak simulated ΔT of 5.6 K 

during discharge. When applying the Averaged-SOC at Constant-OCV method, the 

agreement with the experimental trend improved, lowering the RMSE to 0.93 K and the 

maximum error to 9.79%, and yielding a peak ΔT of 5.9 K. The maximum experimental ΔT 

reached 6.2 K, illustrating the stronger thermal response at nominal C-rate operation. The 

temperature rise during discharge remained higher than during charge, though with a reduced 

peak difference of 0.58 K compared with the 0.5C case. 

Figure 35(b) shows the results when the EHC is included. Similar to the 0.5C condition, 

inaccuracies in the measured EHC data introduce additional deviations. However, the 

influence is more pronounced at 1C, where the RMSE increases to 2.77 K. The largest errors 

appear at low and high SOC, where the entropic contribution to heat generation is strongest. 
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(b) 

Figure 35 Illustration of the Simulated and Experimental Cell–Ambient Temperature Difference (ΔT) with the Applied 
Current Profile at 1C-Rate: (a) Excluding the EHC and (b) Including the EHC. 

5.5.3  Results at 2C-Rate 

Figure 36 illustrates the voltage and current profiles at the 2C-rate. The higher current results 

in a significantly shorter constant-current (CC) charging duration of 1349 s and a CC 

discharging duration of 1594 s. A pronounced voltage relaxation of ΔV ≈  190 mV was 

observed after the discharge phase, which is larger than the 130 mV relaxation at 0.5C and 

the 160 mV observed at 1C. This increasing trend reflects the stronger polarization and 

overpotential effects that develop at higher C-rates. The 2C case therefore represents the 

most demanding operating condition and is used to evaluate the model’s robustness under 

aggressive cycling. 
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Figure 36 Experimental Voltage and Current Profiles at 2C-Rate. 

Figure 37(a) illustrates the ΔT profiles for the 2C-rate cycle. This operating condition 

produces the highest thermal stress among all investigated cases, resulting in the largest ΔT 

values and the strongest amplification of modelling uncertainties. Using the Averaged-OCV 

at Constant-SOC approach, the RMSE reached 1.61 K and the maximum error 12.69%, with 

a peak simulated ΔT of 13.3 K. These values represent a substantial increase relative to the 

0.5C and 1C results. The Averaged-SOC at Constant-OCV method retained superior 

accuracy, reducing the RMSE to 1.29 K and the maximum error to 9.48%. The peak 

experimental ΔT reached 14.25 K, confirming the significant heat accumulation associated 

with high-rate cycling.  

Figure 37(b) presents the simulation results obtained with the EHC included in the model. 

As observed at the other C-rates, uncertainties in the measured EHC introduce additional 

deviations; however, the effect is most pronounced at 2C, where the entropic heat 

contribution coincides with the large irreversible (ohmic and polarization) losses. 

Consequently, the RMSE increases to 4.24 K, and the mismatch becomes most apparent 

during the late-charging and early-discharging stages. Furthermore, because the entropic 

heat term scales with the applied current, the high current at 2C amplifies the thermal 

response, resulting in the largest temperature deviation among all tested C-rates. 
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(a) 

 

(b) 

Figure 37 Illustration of the Simulated and Experimental Cell–Ambient Temperature Difference (ΔT) with the Applied 
Current Profile at 2C-Rate: (a) Excluding the EHC and (b) Including the EHC. 

5.6  Calorimetric Results 

Figure 38 illustrates the voltage and current profiles at the 1C- and 2C-rates used for 

calorimetric heat measurement. The average constant-current (CC) charging duration was 

2737 s for 1C and 1176 s for 2C, while the corresponding discharge durations were 3166 s 

and 1526 s, respectively. A pronounced voltage relaxation was observed after the discharge 

phase, with ΔV ≈ 187 mV at 1C and ΔV ≈ 242 mV at 2C. These relaxation magnitudes are 
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larger than those seen in the separate 1C and 2C measurements, as the cell was charged and 

discharged consecutively without a long rest period between the tests. Although the cutoff 

current for the constant-voltage (CV) charging phase was set to 50 mA, the device terminated 

the charge at approximately 90 mA. All other test conditions were identical to those listed 

in Table 4. 

 

Figure 38 Experimental Voltage and Current Profiles at Different C-Rates. 

Figure 39 presents the calorimetric heat measurement (black dashed line) alongside the heat 

derived from the irreversible heat generation expression (𝑉 −  𝑈𝑜𝑐𝑣) ∗ 𝐼 (red solid curve). 

Although both profiles represent heat generation, the irreversible heat is approximately twice 

as high as the experimentally measured value. As discussed in Section 3.4 , this discrepancy 

arises from the design limitations of the calorimeter, which is optimised specifically for 

pouch and prismatic cells. As a result, its thermal response tends to underestimate the heat 

produced by cylindrical cells, leading to the observed deviation between the experimental 

and calculated heat generation profiles. 
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Figure 39 Experimental Calorimetric Heat Profiles for Two Consecutive Charge–Discharge Cycles at 1C and 2C. 

6  Conclusion 

This thesis examined the thermal behaviour of a 21700 NCA cylindrical lithium-ion cell and 

evaluated a lumped thermal model using experimentally derived inputs. A central focus of 

the work was the comparison of two different OCV–SOC construction methods, Averaged-

OCV at Constant-SOC and Averaged-SOC at Constant-OCV, and their influence on the 

simulated temperature response across different C-rates. 

The parameter identification demonstrated good repeatability, as cooling-curve 

measurements from two separate cells produced nearly identical ΔT decay profiles and a 

consistent thermal time constant of approximately 500 s. The reference OCV–SOC results 

confirmed voltage hysteresis between charging and discharging, and both OCV-averaging 

methods produced almost identical equilibrium curves with only minor deviations at low 

SOC. Temperature-dependent OCV measurements showed consistent behaviour at 23 °C 

and 40 °C, while clear irregularities were observed at 30 °C, leading to the exclusion of that 

dataset. The entropic heat coefficient measurements exhibited notable differences between 

the charge and discharge paths, especially at low and high SOC, which affected the accuracy 

of simulations that included reversible heat. 
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Using the two OCV-processing methods, the thermal model was evaluated at three C-rates: 

0.5C, 1C, and 2C. At 0.5C, both methods produced similar results, with the Averaged-SOC 

at Constant-OCV method achieving slightly better agreement (RMSE 0.47 K) compared 

with the Averaged-OCV at Constant-SOC approach (RMSE 0.57 K). At 1C, the temperature 

rise increased, and the difference between the two methods remained small, though the SOC-

averaged method again yielded better alignment with experiment. At 2C, the highest thermal 

stress occurred, resulting in the largest ΔT values and the strongest model deviations. Even 

under these demanding conditions, the SOC-averaged method provided the lower RMSE, 

demonstrating a more robust performance across all operating conditions. 

Simulations incorporating the entropic heat coefficient demonstrated consistently higher 

errors across all C-rates, with discrepancies most prominent at low and high SOC where the 

entropy measurements exhibited the greatest instability. These results indicate that, although 

the reversible heat term is physically meaningful, its effective use in thermal modelling 

depends on highly reliable entropy data. To address this limitation, the potentiometric 

method at constant SOC can be proposed as a more accurate technique for determining the 

entropic heat coefficient. By evaluating the variation of open-circuit voltage with 

temperature under quasi-static or equilibrium conditions at fixed SOC values, this method 

isolates the reversible entropic contribution by eliminating current-dependent polarization 

and kinetic effects, thereby providing a more robust representation of the cell’s 

thermodynamic behaviour. 

Calorimetric cycling tests provided additional validation by measuring the heat generation 

directly. The irreversible heat calculated using (𝑉 −  𝑈𝑜𝑐𝑣) ∗ 𝐼 was nearly twice the 

calorimetric measurement. This gap is explained by the known limitations of the calorimeter, 

which is optimized for pouch and prismatic cells and underestimates heat generation for 

cylindrical formats. 

Overall, the results show that the developed lumped thermal model can accurately capture 

the temperature evolution of the 21700 cell when reliable input parameters are used. Among 

the two investigated simulation methods, the Averaged-SOC at Constant-OCV approach 

consistently provided better agreement with the experimental ΔT across all C-rates. The 

model is therefore suitable for use in thermal analysis and can support future thermal-

management development for cylindrical lithium-ion cells. 
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Appendix 1. Experimental and Modelling Temperature Results at Different C-Rate 

 

Figure A1 Experimental and Model-predicted Temperature Evolution During Cyclic Charge–discharge at 0.5C. 

 

 

Figure A2 Experimental and Model-predicted Temperature Evolution During Cyclic Charge–discharge at 1C. 
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Figure A3 Experimental and Model-predicted Temperature Evolution During Cyclic Charge–discharge at 2C. 
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