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Motivation:

Introduction

Investigating The Influence of Vapour Pressure

e Urea—water solution (UWS) 1s widely recognized as a promising agent for reducing NOx emissions in current and future fuel systems.
e Urea deposits challenge exhaust after-treatment systems; this work examines UWS spray evaporation to help address this 1ssue.

e This study 1investigates the feasibility of using OD multi-component evaporation models to predict global spray characteristics. Saturation vapour pressure correlations
reported 1n the literature are benchmarked against the 1n-built vapour pressure correlation available in OpenFOAM-11.
e Exploring the sensitivities of multi-component evaporation models within Lagrangian—Eulerian spray simulations.

Simulation setup and Validation

 Experimental setup and data from Kapusta et al.
[1] are used to define the computational domain and
validate the spray. UWS (32.5 wt% Urea) at 298 K
1s 1mnjected 1nto air (77.7% N, & 22.3% ;) at 573
K.

e A Lagrangian-Eulerian framework 1s used to
model the two-phase flow.

 Simulation initialized with experimentally ob-
tained droplet distribution, and injection profiles [1].
e Secondary breakup models and droplet coales-
cence are 1gnored.

e Turbulence 1s resolved through an Implicit LES

method.
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e Evaporation of a multi-component droplet under convection evaluated through a 0D MATLAB code imple-
mented by Mikhil et al.

e Saturation Vapour pressure correlations proposed by Lundstrom et al. [3], Bernhard et al. [4], and Birkhold
[5] compared with the in-built OpenFOAM-11 correlation for the operating range of stmulation (423 K - 573
K).

Multi-component droplet evaporation (0D Results)
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(a) To =423 K, Po=1bar, v=19m/s, do=1mm
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Verification

e 3 meshes of cell sizes 250 um (Coarse), 125 um (Base), 62.5 um (Refined) used to verify grid independence

of results.
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Conclusions & Future Work

The study indicates that simplified OD models are success-
ful in predicting global evaporation characteristics. Fur-

thermore, such tools show promise in comparing the evap-
oration of single droplets and droplet clusters.

Current status of research 1s steered towards understand-
ing the effect of droplet sizes in the modeling of Urea-
water sprays.
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 Global evaporation behavior was assessed by
tracking the cumulative evaporated urea mass from
the nozzle onward — results shown for 4 ms of in-

5

Droplet evaporation (3D Results)

jection.

* Droplet evaporation behavior predicted by the CFD
model 1s consistent with the OD observations.
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