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Abstract

Gaussian Process Regressor (GPR) is a Bayesian optimization-based non-parametric re-
gression technique that has emerged as a very successful modeling method for creating
surrogate models in Machine Learning (ML), particularly where real-world experimental
costs are very high and limited. The effectiveness of GPR hinges on precise hyperparam-
eter calibration and the model’s ability to discern and prioritize relevant input features.
This thesis investigates GPR with a particular emphasis on hyperparameter tuning and
integrating Automatic Relevance Determination (ARD) to assess the significance of input
features and improve surrogate modeling. A series of controlled experiments is conducted
on generated synthetic datasets with diverse dimensionality, noise levels, signal variances,
and feature length scales, enabling a systematic evaluation of model behavior under dif-
ferent training circumstances. Implemented using Python and the scikit-learn library, the
experimental framework facilitates practical assessment of GPR’s sensitivity to initializa-
tion, sample size, and kernel configurations. Model performances are evaluated for com-
parison using multiple optimization strategies under different settings. Although these
optimization strategies have various algorithms, they still serve a few optimization goals,
like maximizing the likelihood and minimizing the error/loss function. The proposed al-
ternate strategies improve the existing model’s drawbacks, model generalization, reduce
overfitting, and decrease computational overhead. These findings contribute to develop-
ing robust and interpretable surrogate models, with implications for scientific computing,
optimization tasks, and engineering applications.

Keywords: Gaussian Process Regression, surrogate modeling, hyperparameter optimiza-
tion, kernel selection, log marginal likelihood, conditional lml, ARD, model training,
machine learning, regression.
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CHAPTER 1

Introduction

Human intelligence is exceptionally skilled at creating comprehensive mental models
from incomplete data. Recognizing a popular face from a partial or obscured image with
some hints demonstrates how the human brain fills in the missing information using prior
knowledge. As Forrester et al. (2008) illustrate, “The key to such apparently impressive
feats is that we actually know a great deal about the obscured parts”. Prior data, like a
famous human face, a roughly symmetrical image, the center point being the nose, etc.,
reduces the search space needed to formulate a decision. Surrogate modeling works on a
similar principle of constructing effective assumptions of an unknown function with the
help of a few known data points (p. ix) [1].

Simulations have become increasingly sophisticated as scientific models and engi-
neering systems have progressed over the decades. However, they also become compu-
tationally expensive, requiring hours of processing for a single run. These simulations
require a good amount of computational resources or extensive physical testing, resulting
in the need for adequate substitutes for high-fidelity simulations, particularly when mul-
tiple iterations or sensitivity studies are needed. Surrogate models can cut computational
costs by approximating complex systems without sacrificing accuracy. As Forrester et
al. (2008) point out, “The basic idea in the ‘surrogate model’ approach is to avoid the
temptation to invest one’s computational budget in answering the question at hand and,
instead, invest in developing fast mathematical approximations” (p. xiii) [1].

Among various surrogate models, those built with a Gaussian Process are widely pop-
ular and often used as the underlying model in Bayesian optimization for approximation
tasks [2]. A Gaussian Process Regressor (GPR) is a well-known non-parametric and
probabilistic Bayesian approach to regression that is ideal for surrogate modeling [3, 4].
According to Rasmussen and Williams (2006), GPR quantifies uncertainty for each pre-
diction and estimates output values by treating predictions as distributions rather than
fixed values. This is essential for risk-aware decision-making [3].

A GPR model’s performance is primarily determined by how its internal similarity or
covariance function is configured and by related hyperparameters or key settings. These
parameters control the ability of the model to fit observed data and generalize. Bishop
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(2006) and Lotfi et al. (2022) highlight that inadequate hyperparameter selection can
result in overfitting or underfitting, reducing the model’s trustworthiness [5, 6].

Automatic Relevance Detection (ARD) enhances the interpretability and relevance of
GPR models in high-dimensional spaces. By giving each input dimension its hyperparam-
eters (i.e., length scale), ARD expands on standard internal similarity functions, allowing
the model to identify the significance of each feature and disregard those that are not rel-
evant [5, 7]. In case of having multidimensional features without any proper indicators of
significance, ARD is useful to determine the similarity and extract important features.

In a study by Liu et al. (2020) predict the calendar aging of lithium-ion batteries is
predicted using GPR with an Automatic Relevance Detection (ARD) covariance func-
tion. The model can automatically determine which factors, such as temperature, state-
of-charge (SOC), and storage time, impact battery degradation the most by using ARD
to give each input feature its length scale. This selective sensitivity enhances the inter-
pretability and performance of the model, especially when there is a shortage of training
data compared to other models. The researchers demonstrate that the accuracy of their
ARD-GPR approach is higher than other machine learning methods and conventional
GPR [8].

This thesis will systematically compare the performance of different optimization
strategies (maximizing the log marginal likelihood, conditionally maximizing the log
marginal likelihood, and minimizing the error) in learning the underlying length scale
of the multi-dimensional input data and explore a machine learning framework that gives
the best model performance with a low cost. Moreover, this study will evaluate how dif-
ferent sizes of data, features, and ARD affect the training efforts of constructed models.
The results are intended to aid in developing surrogate modeling methods that are more
precise, comprehensible, and computationally efficient.

1.1 Motivation

Expensive simulations or costly experimental data collection are frequently required to
develop and validate physical systems in many real-world engineering and scientific prob-
lems. In this era of Machine Learning and Artificial intelligence, with a large amount of
computing resources and scalable infrastructure, computer-aided simulations have reached
unprecedented sophistication and are reducing bottlenecks like complexity, time, and cost.
Surrogate models effectively approximate the behavior of complex systems, cutting those
bottlenecks. Using Gaussian Process Regressor (GPR), as a forefront of surrogate mod-
eling techniques, with the help of Automatic Relevance Detection (ARD) for significant
dimensions identification, can help to potentially reduce computational complexity with-
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out sacrificing accuracy [1, 3].
Even with these developments, there remain questions regarding the optimal strategies

for hyperparameter optimization in GPR models with ARD and various sizes of datasets.
This study attempts to close this knowledge gap by methodically assessing various op-
timization techniques under various data scenarios. However, the right choice of hy-
perparameters, which control the internal similarity function’s behavior and the model’s
capacity for generalization, is crucial to its performance. Optimizing the balance between
model fit and predictive uncertainty is frequently not possible with traditional default or
manual settings.

The study’s motivation is to systematically investigate hyperparameter tuning strate-
gies by conducting experiments on GPR datasets of various shapes and dimensions and
evaluating how ARD enhances model performance and interpretability in diverse scenar-
ios.

1.2 Research Questions

1. How can automatic relevance detection and hyperparameter tuning based on similar
data decrease the effort of training?

2. What effects does dataset size have on the efficacy of hyperparameter tuning?

3. Which methods for optimizing hyperparameters offer the best balance between
model performance and computational expense?

3
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CHAPTER 2

Background

2.1 Surrogate Modeling

In engineering, surrogate models serve as simplified approximations of complex systems.
Particularly, when direct evaluations are computationally intensive or infeasible. Simu-
lations are frequently employed to evaluate the connection among different parameters,
such as constraints, objectives, and design variables. Since high-fidelity simulations can
be time-consuming and resource-intensive, surrogate models provide a practical alterna-
tive by approximating outcomes at significantly lower computational cost. These models
approximate intricate and computationally costly simulations. As highlighted by For-
rester et al. (2008), with much lower computational costs, surrogate models offer a useful
way to carry out sensitivity analysis, uncertainty quantification, and optimization [1].

Common surrogate modeling techniques include artificial neural networks, support
vector machines, radial basis functions, and polynomial regression models, each suited
to different types of approximation problems [4]. However, Gaussian Process Regressor
(GPR) is notable for its prediction and uncertainty estimation capacity. Due to this, GPR
is highly in demand for those areas where both characteristics are required [3].

2.2 Parametric model vs Non-Parametric model

Parametric models have fixed parameters, while non-parametric models work with infinite
parameters. Fixed parameters are explicitly defined in the model. A good example of
a parametric model that assumes a fixed nonlinear form with parameters is polynomial
regression, which usually estimates coefficients for powers of input variables. On the
other hand, GPR is a non-parametric model. Instead, it infers the function shape directly
from the data with the help of a kernel or covariance function [3].

• Parametric model:
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The Polynomial Regression (PRG) parametric model can be expressed as [4]:

fi(z) =
NPRG

∑
j=1

βjz
(i)
j + εi (2.1)

with:

E[εi] = 0, V[εi] = σ
2

– fi(z): predicted output for the ith data point.

– z(i)j : the jth feature (input variable) of the ith sample.

– β j: parameters (regression coefficients) of the model to be learned.

– εi: random noise or error term.

– E[εi] = 0: error has zero mean.

– V[εi] = σ2: error has constant variance σ2.

• Non-Parametric model:

A GP represents a non-parametric probabilistic model that defines a distribution
over possible functions and can be formally described as follows [3]:

f (x)∼GP(m(x),k(x,x′)) (2.2)

– f (x): a random function taken from a GP.

– m(x): the mean function.

– k(x,x′): the covariance function.

This implies that each finite set of function values f (x1), f (x2), . . . , f (xn) has
a multivariate normal distribution.:

[ f (x1), . . . , f (xn)]
⊤ ∼ N(m,K) (2.3)

where m is the mean vector and K is the covariance or kernel matrix as deter-
mined by the kernel function..
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2.3 Gaussian Process Regressor (GPR)

Gaussian Process Regressor has evolved and risen as a powerful non-parametric proba-
bilistic machine learning algorithm in statistical learning and engineering design (p. xiii).
The foundational work by Rasmussen and Williams (2006) contributed to the ground-
work for GPR to present it as a versatile non-parametric method that offers not only
forecasts, but also estimates of uncertainty [3]. Their work expanded on a previous tu-
torial by MacKay (1998) that linked GPR to Bayesian frameworks and contributed to
the popularization of these techniques [9]. Rasmussen and Williams showed how GPR
may capture intricate patterns with comparatively few hyperparameters by formalizing it
inside a Bayesian framework. This groundwork considerably expanded the approach of
GPR, especially in the fields of hyperparameter adjustment and feature selection [3].

Bishop (2006) further explained GPR’s relationship to other kernel techniques and
Bayesian approaches by placing it inside a larger probabilistic modeling framework. He
characterizes GPR as a generalized form of Bayesian linear regression, enhanced by the
use of an infinite set of basis functions. He gives a detailed explanation of how the kernel
function encodes prior beliefs about function attributes and links GPs to other kernel
approaches [5].

Connecting surrogate modeling with GPR, Forrester, Sóbester, and Keane (2008)
present experimental design guidelines on surrogate modeling focusing on GPR as a pow-
erful method for creating computationally effective metamodels that simulate costly sim-
ulations or testing [1].

Figure 2.1: Using a two-column layout, GPR visualizations display (left) the prior distri-
bution with three sampled functions and the mean, which illustrates the model’s assump-
tions before data observation, and (right) the posterior distribution with the mean, 95%
Confidence Interval, and five noisy observations, which represents the updated model fol-
lowing data fitting.

Based on Bayesian statistics, Gaussian Process Regressor creates a posterior by up-
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dating a prior over functions with observed data. This probabilistic framework allows
GPR to generate point predictions and corresponding confidence intervals. In Figure 2.1,
the prior samples show the GP’s natural variability based on the RBF kernel’s variance,
with the mean representing the expected function before seeing any data. After observing
data, the posterior mean adapts to fit it, while the 95% confidence interval reflects pre-
diction uncertainty, wider due to the noise variance (σ2

n ). The difference between prior
and posterior shows how data reduces uncertainty near known points while maintaining
smoothness.

GPR performs inference by modeling a distribution over functions. As outlined in
Chapter 2.2 of Rasmussen and Williams (2006), a Gaussian Process is fully defined by
its mean function m(x) and covariance function k(x,x′) [3]. Beyond the formulation in
Equation 2.2, GPR makes predictions for a test input x∗ by computing the posterior dis-
tribution, also Gaussian, conditioned on the training data {X ,y}. Here, X ∈Rn×d denotes
the input matrix with n samples and d features, and y ∈ Rn represents the corresponding
target outputs. This approach allows GPR not only to predict the mean but also to estimate
the variance, offering insight into the model’s uncertainty about its predictions.

f∗ | X ,y,X∗ ∼ N( f̄∗,cov( f∗)) (2.4)

Mean: f̄∗ = K(X∗,X)
[
K(X ,X)+σ2

n I
]−1 y

Covariance: cov( f∗) = K(X∗,X∗)−K(X∗,X)
[
K(X ,X)+σ2

n I
]−1 K(X ,X∗)

where

• K(X ,X): the kernel matrix of the training inputs.

• K(X∗,X): covariance between test inputs and training inputs.

• K(X∗,X∗): covariance of test inputs with themselves.

• σ2
n : noise variance.

• I: identity matrix (of size n×n).

• y: observed output values (training labels).

2.4 Covariance Functions

Covariance Function or Kernel exhibits the similarity between observations (input sam-
ples). According to Rasmussen & Williams (2006) in Chapter 2.2, “The choice of covari-
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ance function encodes assumptions about the function being modeled, such as smooth-
ness, periodicity, and amplitude.” [3].

The "Kernel Cookbook" by David Duvenaud (2014) [10] is a noteworthy addition
to kernel approaches, especially regarding Gaussian processes. Duvenaud sees kernel
design as building with blocks in that basic kernels are parts that can be joined to form
more powerful models. The main contrast of this cookbook is that each kernel reflects a
particular assumption about the function’s behavior.

In machine learning, a kernel or covariance function is a mathematical tool that de-
termines how similar two data points are. It compares two input vectors (e.g., x, x′) and
returns a single number value indicating their similarity. This number assists the algo-
rithm in determining how closely connected the two points are in a higher-dimensional
(feature) space, even if they do not appear similar at first glance.

The key idea is to perform computations in a high-dimensional feature space with-
out explicitly mapping the data into that space. This concept is known as the kernel trick,
which enables significant computational savings when dealing with high-dimensional rep-
resentations. A kernel function implicitly incorporates prior assumptions about the target
function’s characteristics, such as stationarity, periodicity, and smoothness [3].

There are some common kernels, such as Sqaured Exponential (RBF) kernel, Matern
kernel, Rational Quadratic kernel, Periodic kernel, and others. Selecting the right kernel
is essential to the model’s functionality since it controls the GP’s behavior and capacity
for generalization. David Duvenaud (2014) described different covariance functions, such
as [10, 11]:

Squared Exponential (SE) kernel
The SE kernel, sometimes referred to as the Radial Basis Function (RBF) kernel, is well-
liked for its limitless differentiability and smoothness:

kSE(x,x′) = σ
2
f exp

(
−∥x−x′∥2

2ℓ2

)
(2.5)

• σ2
f : signal variance, calculates the function’s average deviation from its mean.

• ℓ: length scale, controls the frequency of the curve of the underlying function..

With Automatic Relevance Determination (ARD), each input dimension d receives its
own length scale ℓd:

kSE-ARD(x,x′) = σ
2
f exp

(
−

D

∑
d=1

(xd− x′d)
2

2ℓ2
d

)
(2.6)
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Rational Quadratic (RQ) kernel
The Rational Quadratic kernel is a scale mixture of SE kernels with different length scales:

kRQ(x,x′) = σ
2
f

(
1+
∥x−x′∥2

2αℓ2

)−α

(2.7)

where α is the scale mixture parameter. As α→∞, this kernel approaches the SE kernel.

Periodic kernel
The Periodic kernel captures repeating patterns with a given period p:

kPer(x,x′) = σ
2
f exp

(
−2sin2 (π∥x−x′∥/p)

ℓ2

)
(2.8)

This kernel is suitable for time-series or seasonal data with known cycles.

Hyperparameters of kernels [10]:

Table 2.1: Associated hyperparameters with different kernels
Kernel Name Hyperparameters
Squared Exponential (RBF) Lengthscale (l), Signal variance (σ2

f )
Matérn Lengthscale (l), Signal variance (σ2

f ), Smooth-
ness parameter (ν)

Rational Quadratic Lengthscale (l), Signal variance (σ2
f ), Scale

mixture parameter (α)
Linear (Non-Stationary) Variance (σ2)
Polynomial (Non-Stationary) Coefficient (c), Degree (d)
Periodic Lengthscale (l), Period (p), Signal variance

(σ2
f )

Constant Constant value (c)
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2.5 Hyperparameter Tuning in GPR

The hyperparameters affect the model’s accuracy and efficiency, so selecting the appro-
priate ones is crucial. Otherwise, it may learn the training data well but perform poorly
on new test data, or it may not learn enough to perform well. In contrast to traditional
parameters that are learned directly from data, GPR hyperparameters are optimized by
maximizing the marginal likelihood, balancing data fit and model complexity[2].

According to MacKay (1999), who made links between maximal likelihood estima-
tion (MLE) and Bayesian model selection principles, early methods of hyperparameter
optimization mostly depended on MLE.

Rasmussen and Williams (2006) established Marginal likelihood maximization as the
primary method for GP hyperparameter optimization in their work. Moreover, they pre-
sented analytical gradients of the marginal likelihood concerning hyperparameters, which
allowed for the adoption of gradient-based optimization approaches. The research pro-
vided practical advice on starting tactics and optimization processes, such as employing
several restarts to prevent local optima and optimizing specific parameters in log-space
[3].

Aligning with Rasmussen and Williams (2006), Bishop (2006) offers a logical method
for estimating maximum likelihood, in which the marginal likelihood (or evidence) func-
tion is maximized to adjust hyperparameters. Occam’s razor is naturally used in this strat-
egy, which balances data fit and model complexity without the need for additional vali-
dation data. Bishop highlights that this optimization method offers an intuitive Bayesian
framework for automatically discovering the ideal kernel parameters and noise levels,
even though it can occasionally be difficult due to several local optima [5]. Getting the
best out of the model, hyperparameter tuning will help to select the optimal values.

The role of hyperparameters in GPR

Hyperparameters in the GPR include the noise variance, the kernel’s length-scales, and
signal variance:

• Noise variance:
In order to assist the model differentiate between signal and noise and improve
generalization and uncertainty estimates, the noise variance (σ2

n ) in GPR represents
the amount of noise or error that is anticipated in the observed data.
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Figure 2.2: Illustration of the effect of noise on GPR predictions, presented in three
panels: (left) low noise (ε = σ2

n = 0.01) with a tight fit to observations, (middle) medium
noise (ε = σ2

n = 0.1) showing increased uncertainty, and (right) high noise (ε = σ2
n = 0.5)

with a smoother posterior mean and wider confidence intervals, each displaying the
posterior mean, 95% confidence interval, and observed data points. Where ε represents
the data noise and σ2

n represents the assumed noise in the model.

• Length scales:
The length scale (ℓ) is a hyperparameter in covariance or kernel functions such as
the SE kernel or the RBF. It establishes how rapidly the values of the kernel func-
tion can alter in response to changes in the input. Whereas a lengthy length scale
suggests smoother, slower variation throughout input space, a small length scale
allows quick changes (high change).

• Signal variance:
Signal variance (σ2

f ) in GPR refers to the variability in observed data or latent func-
tion values, which is commonly represented by the covariance function or kernel’s
variance parameter, which regulates the amplitude of the function’s fluctuations.
High variance might imply noisy data or complicated patterns, which affect GPR’s
predicting uncertainty and performance.

12



Figure 2.3: Illustration of the effect of feature length scales (ℓfeature) on the true function
sin(x/ℓfeature) in Gaussian Process Regression, depicted with three curves: length scale
0.5 (blue) showing rapid oscillations, length scale 1.0 (orange) with moderate periodicity,
and length scale 5.0 (green) exhibiting a near-linear trend, highlighting the influence of
length scale on function smoothness.

Figure 2.4: Demonstration of the effect of signal variance (σ2
f ) on GPR predictions with-

out using any optimizer, shown in three panels: (left) low variance (σ2
f = 0.05) with a

tight fit to observations, (middle) medium variance (σ2
f = 1.5) showing balanced flexi-

bility, and (right) high variance (σ2
f = 3.0) with increased uncertainty, each depicting the

posterior mean, 95% confidence interval, and observed data points.
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Hyperparameter optimization methods

Various methods exist for optimizing hyperparameters in GPR, each offering different
trade-offs between computational efficiency, accuracy, and robustness. A few of those are
used in this thesis to compare the performance of the models. Such as:

• Log Marginal Likelihood:
"Gaussian Processes for Machine Learning" by Rasmussen and Williams (2006) is
arguably the most thorough explanation of hyperparameter optimization concerning
Gaussian processes. In this literature, authors present a hyperparameter tuning ap-
proach where hyperparameters are usually chosen by maximizing the Log Marginal
Likelihood (LML) or the model evidence. This approach balances model fit and in-
tricacy of a complex model by applying Occam’s razor and penalizing (Ch. 5.4)
[3].

The Log Marginal Likelihood for a Gaussian process is described as:

log p(y | X,θ) =−1
2

y⊤K−1
y y− 1

2
log |Ky|−

n
2

log2π (2.9)

Where Ky =K(X ,X)+σ2
n I is the covariance matrix determined by hyperparameters

θ and n is the number of observations. −1
2y⊤K−1

y y denotes the data-fit term, while
a penalty term is formulated with −1

2 log |Ky|. A normalization constant −n
2 log2π

is added to the end.

Bishop (2006) further supports Rasmussen and Williams’ view by showing how
Occam’s razor is naturally embodied by the marginal likelihood, which automati-
cally balances data fit and model complexity (Ch. 3 & 4.4). Additionally, the author
points out that gradient-based optimization methods can effectively maximize this
likelihood (Ch. 6.4.3) [5].

Forrester et al. (2008) in "Engineering Design via Surrogate Modelling" focus on
surrogate-based optimization techniques for engineering design. These techniques
are especially valuable for expensive black-box functions. The authors demon-
strate how GP surrogates can help find optimal hyperparameters for such expensive
evaluation. Moreover, authors pointed out the benefits of automatic hyperparame-
ter estimation using marginal likelihood, which can make reliable models without
manual tweaking. Notably, the challenges related to small sampling observations
(i.e., 3, 4) in a surrogate model may be inaccurate (Ch. 3.2.1) [1].

• Conditional Log Marginal Likelihood:
Lotfi et al. (2022) also highlighted similar findings. Authors have pointed out that
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although Occam’s razor is automatically incorporated into the marginal likelihood
by punishing model complexity, it can be sensitive to presumptions and may not
accurately forecast generalization performance. Chapter 4.2 of the paper [6] shows
how Marginal likelihood optimization for hyperparameter learning can be overfit or
underfit by ignoring uncertainty or selection of the hyperparameter [6].

To overcome this problem, authors introduce the Conditional Log Marginal Likeli-
hood (CLML), which splits observations into subsets and conditions the marginal
likelihood. It helps to reduce the influence of prior assumptions and improve the
model’s prediction capability on unseen data. Using LML decomposition and train-
ing and testing on available and unseen data, authors formulate CLML as:

n

∑
i=m

log p(Di | D<i,M) = log p(D≥m | D<m) (2.10)

where m∈ 1, ...,n is the cutoff number, D≤m is the set of observations from Dm to Dn.
M is the given model.

In Appendix B of Lotfi et al. (2022), the authors mentioned that CLML has a
dependency on datapoints ordering; thus, doing the average of CLML across all
possible orderings makes it independent. Due to a large number of permutations,
instead of doing all permutations, the authors suggest doing an approximation as:

1
|Ŝ| ∑

σ∈Ŝ

n

∑
i=m

log p(Dσ(i) | Dσ(1), . . . ,Dσ(i−1),M) (2.11)

where Ŝ ⊂ Sn is a subset of several random permutations acquired from all permu-
tations, σ ∈ Ŝ is a single permutation from that subset [6].

• Leave-One-Out Cross Validation (LOO-CV):
Leave-One-Out Cross Validation (LOO-CV) is another hyperparameter optimiza-
tion method. Rasmussen and Williams (2006), Forrester et al. (2008), Bishop
(2006), and others discussed this method in their literature. Rasmussen and Williams
(2006) presented LOO-CV based on the inverse of the kernel matrix, which allows
the errors to be calculated with a single inversion. While Bishop (2006) highlighted
the benefits of avoiding the over-optimism of training error, the author also warned
of some setbacks, such as higher variance in error estimating due to extreme sensi-
tivity of individual observation [1, 3, 5].
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Hyperparameter search strategies

There are several search strategies for determining the best hyperparameters in GPR. Ev-
ery strategy is customized to meet particular modeling requirements and computational
limitations. Some of them are:

Gradient-Based Optimization: Uses analytical gradients of the log marginal likelihood
(e.g., Quasi-Newton method) to find optimal hyperparameters [12].

• Pros: Utilizing smooth and differentiable objectives, such as those in GPR, it
is quick and scalable.

• Cons: Requires differentiability; may converge to local optimalities.

• Best suited for: Gaussian Process models and moderate dataset sizes with
analytically tractable likelihoods.

Bayesian Optimization: Builds a surrogate probabilistic model (e.g., Gaussian Process)
of the objective function and selects new points by balancing exploration and ex-
ploitation.

• Pros: Sample-efficient; suitable for expensive evaluations.

• Cons: Overhead of maintaining the surrogate model; scales poorly with many
hyperparameters.

• Best suited for: Expensive or black-box objective functions with limited eval-
uations.

Grid Search: This method evaluates all possible combinations of hyperparameter values
within specified ranges.

• Pros: Simple to implement; exhaustive and interpretable.

• Cons: Inefficient in high dimensions; computationally expensive.

• Best suited for: Low-dimensional problems or when parameter ranges are
well understood.

Random Search: Randomly samples combinations from the hyperparameter space in-
stead of exhaustively evaluating all of them.

• Pros: More efficient than grid search; better exploration in high dimensions.

• Cons: Still requires many evaluations; lacks systematic guidance.

• Best suited for: High-dimensional problems where only a few parameters are
critical.

.
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2.6 Automatic Relevance Detection (ARD)

The conceptual underpinnings of ARD were presented in MacKay’s earlier work (1998),
which demonstrated how it could automatically select pertinent input dimensions. ARD
was first created using distinct weight variance hyperparameters, and Neal (1996) linked
it to his research on Bayesian neural networks [9, 13].

Later, Williams and Rasmussen (1996) adapted and applied ARD principles to Gaus-
sian Processes (GPs), including dimension-specific length-scale parameters into the squared
exponential kernel, for feature selection and managing high-dimensional inputs [3]. Be-
cause it skillfully incorporates feature importance assessment into the model training pro-
cess without requiring additional validation data, ARD has established itself as a standard
strategy for feature selection in GPR.

In the squared exponential kernel, ARD is introduced by modifying the length scale
for each dimension:

k(x,x′) = σ
2 exp

(
−

D

∑
d=1

(xd− x′d)
2

2ℓ2
d

)
(2.12)

ARD improves both interpretability and performance in high-dimensional settings,
making it a valuable tool in model refinement and feature selection.

2.7 Synthetic Data

Working with Synthetic data has gained so much popularity among researchers nowadays
due to the ability to simulate real data, augmentation, analysis, and privacy. With the
help of Synthetic data, researchers can evaluate the model or process performance by
generating datasets in a controlled setting.

According to this study in the article "Synthetic Data — what, why and how?" by
James Jordon et al.[14], Synthetic Data is broadly explained, including potential applica-
tions and related challenges.

"Synthetic data is data that has been generated using a purpose-built math-
ematical model or algorithm, with the aim of solving a (set of) data science
task(s)." [14]

The article by R. L. Harrison explains how Monte Carlo methods use random sam-
pling to approximate numerical outcomes to construct a procedure to produce synthetic
data. When creating samples for stochastic (random) systems, Monte Carlo simulations
frequently begin with uniform random numbers [15].
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2.8 True or latent function

Sinusoidal test function

In regression and machine learning research, a sine wave test function is a frequently used
synthetic function, especially for assessing how well models such as GPR perform. It has
the following features and is based on the mathematical sine function:

y = sin
(

x
ℓ f eature

)
+ ε, (2.13)

where x is the input domain, ℓ f eature is the feature length scale that controls the frequency
of the wave, and ε ∼N (0,σ2) represents optional Gaussian noise.
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CHAPTER 3

Methodology

This chapter describes the approach taken to investigate how hyperparameter tuning and
automatic relevance detection (ARD) affect Gaussian Process Regression (GPR) models.
The main objective is to understand the effects of various tuning techniques on input
relevance identification and model performance. Python is the primary language used in
the study, which uses synthetic datasets for controlled experimentation.

3.1 Gaussian process modeling framework

Gaussian Process Regressor

Several libraries and packages are available on the internet based on the Gaussian Pro-
cess Regression. This package allows researchers to apply the Gaussian Process Regres-
sion to their dataset. Also, other libraries, like GPy, GPflow, GPytorch, PyStan, etc., are
present based on the Python programming language. In this study, a class called ‘Gaus-
sianProcessRegressor‘ was used from the Scikit-Learn software package for the Python
language. This class is constructed based on Algorithm 2.1 from the book of Rasmussen
and Williams (2006) [3]. It is used to fit and predict the training and test data, where an
optimizer can be used to optimize the kernel parameters.

RBF kernel and hyperparameter settings

In this study, the Squared Exponential (SE) kernel, sometimes referred to as Radial Ba-
sis Function (RBF) kernel [10], is selected as the primary kernel for Gaussian Process
Regressor due to its flexibility, effectiveness, and the capability to explain radial char-
acteristics in the data. When enough data is available, it works well for modeling con-
tinuous, non-linear functions. The RBF kernel is perfect for hyperparameter tweaking
and Bayesian optimization, especially with limited datasets, because it can also adjust to
different patterns [3, 5].

In the multi-dimensional setup (starting from 2D input data), ARD is implemented by
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applying separate length scales for each dimension in the kernel. In most of the experi-
ments done in this study, a few common hyperparameter settings are used, besides those
experiments where it requires changing the values, such as

• Feature length scale of latent function: A value of 1.0 is set to the feature length
scale, where no emphasis is given on the effect of the feature length scale in the
experiments by setting a value to it.

• Initial kernel length scale: for each dimension, a length scale 1.0 is used. For
certain experiments, different values are assigned.

• Signal variance: Except specific scenarios where the effect of signal variance is
shown, a common value of 1.0 is used with bounds of 1.0 (for both high bound and
low bound).

• Noise: Almost no noise is added to the input data and model assumption.

Hyperparameter tuning strategies

• Log Marginal Likelihood in Gaussian Process Regression

In GPR, model selection and hyperparameter optimization are typically performed
by maximizing the log marginal likelihood (LML). Equations 5.8 and 5.9 in Chapter
5.4.1 of Rasmussen, C. E., & Williams, C. K. (2006) illustrate the maximization of
the marginal likelihood to set the hyperparameters in a model [3].

θ
∗= argmax

θ

log p(y |X,θ)= argmax
θ

[
−1

2
y⊤(Kθ +σ

2
n I)−1y− 1

2
log
∣∣Kθ +σ

2
n I
∣∣− n

2
log2π

]
(3.1)

where θ represents the hyperparameters (e.g., length-scales ℓ, signal variance σ2
f ,

and noise variance σ2
n ), and Kθ is the covariance matrix computed using a kernel

function parameterized by θ

• Conditional Log Marginal Likelihood

An alternative to LML is the Conditional Log Marginal Likelihood (CLML), which
aims to optimize hyperparameters based on conditional distributions of subsets of
the data. CLML is particularly useful when assessing the importance of individual
features or performing structured model selection. A shuffling method is used to
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generate the subsets, where random seeds (ranging from 20 to 100) of the length
of the intended number of shuffles are generated. Using each seed value, random
permutations of positions of the training data length are drawn to shuffle the training
data based on the positions. CLML is applied to the full and shuffled input data.

θ
∗= argmax

θ

CLML(X ,y,Xm,ym)= argmax
θ

[
log p(y|X ,θ)− 1

S

S

∑
i=1

log p(ym|Xm,θ)

]
(3.2)

where the term S indicates the number of shuffled subsets. Also, Xm,ym are the
shuffled subsets of the training data. Like log marginal likelihood, a difference of
log p(y|X ,θ) is calculated over full training points and shuffled subsets.

• Leave One Out Minimizing Errors

The Leave-One-Out (LOO) method evaluates generalization performance by itera-
tively removing one data point, training on the remaining data, and predicting the
held-out point. The predictive log-likelihood or squared error is computed for each
left-out observation, and the average across all n points gives a robust estimate of
model performance.

The minimized sum of mean squared errors ((∑MSE)min) when leaving out training
case i for testing is,

θ
∗ = argmin

θ

n

∑
i=1

(
1
n

m

∑
j=1

(
yi− ŷ(−i)

i

)2
)

(3.3)

where θ represents hyperparameters of the model (e.g., length-scale ℓ, signal vari-
ance σ2

f , noise variance σ2
n ). θ ∗ represents the optimal set of hyperparameters that

minimizes the LOO error. n is the total number of training data points. yi is the
true value of the i-th training output. ŷ(−i)

i depicts the predicted value of yi when

the model is trained without the i-th point.
(

yi− ŷ(−i)
i

)2
represents the squared

prediction error for point i in leave-one-out setting.
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3.2 Algorithms

GPR training and prediction algorithm

Algorithm 1 Gaussian Process Regression, by Rasmussen and Williams (2006)
Require: Training inputs X = {xi}n

i=1, training targets y = {yi}n
i=1, test inputs X∗, covari-

ance function k(x,x′)
Ensure: Predictive mean f̄∗ and variance Var( f∗)

1: Compute the covariance matrix K such that Ki j = k(xi,x j)
2: L := cholesky(K +σ2

n I)
3: α := L−⊤(L−1y)
4: f̄∗ := k⊤∗ α

5: v := L−1k∗
6: V [ f∗] := k(x∗,x∗)− v⊤v
7: log p(y|X) :=−1

2y⊤α−∑i logLii− n
2 log2π

8: return f̄∗ (mean), V [ f∗] (variance), log p(y|X) (log marginal likelihood)

LML optimization algorithm

Algorithm 2 Hyperparameter Tuning via Log Marginal Likelihood
Require: Input data X ∈ Rn×d , targets y ∈ Rn, kernel function kθ , noise variance σ2

n
Ensure: Optimal hyperparameters θ ∗

1: Define the kernel matrix Kθ where [Kθ ]i j = kθ (xi,x j)
2: Compute the log marginal likelihood:

log p(y | X,θ) =−1
2

y⊤K−1
y y− 1

2
log |Ky|−

n
2

log2π

3: Use an optimization routine to find:

θ
∗ = argmax

θ

log p(y | X,θ)

return θ ∗
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CLML algorithm

Algorithm 3 Compute Conditional Log Marginal Likelihood (CLML)
Require: Training data (Xtrain,ytrain), kernel k(·, ·) with length scale ℓ, noise variance σ2

n ,
number of shuffles S

1: Set cutoff size m = ⌊0.2 · |Xtrain|⌋
2: Initialize GPR model with kernel k and noise variance σ2

n
3: Fit GPR on (Xtrain,ytrain)
4: Compute log marginal likelihood on full data:

LMLfull = log p(ytrain|Xtrain,θ)

5: Initialize Total LML shuffled← 0
6: for i = 1 to S do
7: Generate random seed and shuffle indices of training data
8: Select first m points: (Xm,ym)
9: Fit GPR on (Xm,ym)

10: Compute log marginal likelihood:

LMLi = log p(ym|Xm,θ)

11: Total LML shuffled← Total LML shuffled+LMLi
12: end for
13: Compute average LML of shuffled data:

LMLavg_suf =
Total LML shuffled

S

14: Compute Conditional Log Marginal Likelihood:

CLML = LMLfull−LMLavg_suf

return CLML
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LOO error minimization algorithm

Algorithm 4 Leave-One-Out Error Minimization
Require: Dataset (X ,y) with n samples, kernel parameters θ

1: Initialize total error E ← 0
2: for i = 1 to n do
3: Exclude the i-th data point: (xi,yi)
4: Define training data: X−i = X \{xi}, y−i = y\{yi}
5: Train GPR model f−i using (X−i,y−i) and kernel parameters θ

6: Predict mean µi = f−i(xi) and variance σ2
i

7: Compute the mean squared error for i-th point:

MSEi =
1
n

n

∑
i=1

(yi− ŷi)
2

8: Accumulate: E ← E +MSEi
9: end for

10: Return sum of MSE: E

3.3 Dataset & preprocessing

To simulate the real-world data, various generated test datasets were used in this study
to understand the process of Gaussian Regression and learn to optimize hyperparameters.
Different Lengthscale (ℓ)(s), different test functions, and equal or random distances within
observations were used to generate the one and multidimensional test datasets. Varying
the number of observations helped produce significant results for this study.

Synthetic data generation

In a controlled environment, the models are assessed using synthetic datasets. These
datasets are produced in different dimensions (from 1D to 4D) using already known func-
tions, such as sinusoidal nonlinear functions. To mimic the variety found in the real world,
Gaussian noise is used when required.

Training and testing points

The fundamental task of a model is to train on training points and assess accuracy on
testing points. In this study, from 3 to 50 training points (TP) are used to train up the
model, while around 500 to 1000 test points are used to evaluate the model accuracy.
Also, this high number of points helps to visualize at a higher resolution.
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Sampling domain

Input samples are randomly selected from the [0,2π] domain. This domain is selected
because the objective function for simulation is a sine function, which is periodic with a
fundamental period of 2π . By using this interval, the entire sine wave cycle is recorded,
resulting in representative behavior of the function during its period. The model’s capacity
to generalize over known function structures and learn periodic patterns is best assessed
in this environment. However, a few experiments in this study show that it creates an
aliasing effect when the number of samples is relatively low (between 3 and 5) or when
some samples are positioned at the beginning or end. To avoid this problem, a uniform
distribution range was adjusted to [0+0.5,2π−0.5] when needed.

Monte Carlo sampling

Monte Carlo sampling is used to create the input data from a uniform distribution across
the input domain for the surrogate models’ training and testing [16]. This method prevents
bias in the function approximation and guarantees generality.

The input values (X) are sampled uniformly from the interval [0, 2π]. This domain
ensures that the periodic nature of the sine function is fully captured. The inputs are then
sorted to aid in visualization or interpolation. However, a few experiments in this study
showed that it created an aliasing effect when the number of samples was minimal or
some samples were at the beginning or end. To avoid this problem, a uniform distribution
range was adjusted to [0+0.5,2π−0.5] where needed.

True or latent function:
The target outputs ( f (X , ℓ f eature)) are generated using a sinusoidal function that was used
with a scaling factor named Feature Length Scale of the Underlying Data (ℓ f eature).

f (X , ℓ f eature) = sin
(

X
ℓ f eature

)
(3.4)

where

• X is the independent observations or training points.

• ℓ f eature is the length scale of the underlying data (controlled synthetic input feature).
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Figure 3.1: The plot displays three sine wave functions with varying amplitudes. Each
subplot illustrates a sine wave across the sampling domain. Furthermore, a scaling factor
named ℓ f eature controls the wavelength or the frequency of the periodicity.

In the Figure 3.1, left, center, and right subplots show a sine wave with ℓ f eature values
of 1.0, 0.5, and 1.5, respectively, demonstrating how the sine wavelength changes propor-
tionally to the ℓ f eature value.

The feature length scale of the underlying data is essential for managing the true func-
tion’s variability. It makes it possible to modify the trends of the input data, offering a
versatile and regulated setting for creating synthetic data with various properties. Exper-
iments can yield datasets with a variety of trend behaviors by altering the feature length
scale (ℓ f eature). By suitably modifying their hyperparameters, models trained on these
samples can then learn the underlying patterns by appropriately adjusting their hyperpa-
rameters [5].

3.4 Evaluation Metrics

The following metrics were used to evaluate model performance:

• Negative Log Marginal Likelihood (NLML): Used as the objective for LML
and CLML. Minimizer tries to minimize the NLML, which maximizes the Log
Marginal Likelihood.

• Root Mean Squared Error (RMSE): Measures prediction accuracy on the test set.

• Mean Absolute Error (MAE): Provides a more interpretable error measure.

• Learned length scale: Compare models on how well they learned the input feature
length scale.

• ARD Lengthscales: Used to rank the relevance of each input dimension.
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CHAPTER 4

Results and Discussions

This chapter reports on experiments done to assess the performance of Gaussian Process
Regression (GPR) models constructed by three optimization methods, LML, CLML, and
LOO. Its main topics are Automatic Relevance Determination (ARD) and hyperparameter
tuning using various hyperparameter optimization techniques. The aim is to evaluate how
ARD affects GPR’s interpretability and predictive accuracy and how various optimization
techniques enhance performance.

4.1 One-dimensional hyperparameter tuning

Model performance evaluation with different observation sizes

This experiment assesses the predictive errors and learned length scale of optimization
methods over various numbers of training points and noise levels.

Table 4.1 compares Root Mean Squared Error (RMSE) and Mean Average Error
(MAE) for LML, CLML, and LOO methods (average of 10 runs) among increasing train-
ing points (TP = 10, 25, 50,100) with feature length scale of 1.0, signal variance of 1.0,
number of restarts of 1, and almost no noisy data. According to the result, LML consis-
tently achieved the lowest RMSE and MAE error values, particularly where TP were less
(around 10). With a larger number of TP (more than 25), all methods converge to low
RMSE and MAE error levels.

Table 4.2 compares the learned length scales for the LML, CLML, and LOO meth-
ods, using a true feature length scale (ℓ f eature) of 1.0, in both noiseless and noisy sce-
narios (noise levels of 0.1). In the absence of noise, CLML and LOO converge toward
the true feature length scale (ℓ f eature) as the number of training points (TP) increases,
whereas LML consistently overestimates the length scale, indicating unduly smooth func-
tion fits. All approaches tend to overestimate the learned length scale (ℓlearned) when noise
is added; LOO stays more conservative, while LML and CLML approach values close to
1.77. This demonstrates how noise, particularly for LML and CLML, causes the models
to interpret the underlying function as smoother.
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Table 4.1: Performance comparison of model selection methods (LML, CLML, LOO)
with varying number of training points.

Models’ performance
ℓ f eature = 1.0, Signal Variance = fixed, Noise=1e-10

Method TP RMSE MAE

LML

10 0.007654748846002417 0.0032475816526273725
25 7.868033887070962e-05 2.3175824445591902e-05
50 2.5539376268566242e-05 7.26487183731833e-06

100 1.1399874637132645e-06 7.856934095710494e-07

CLML

10 0.03193955936502695 0.015304528863826886
25 0.006112697941251576 0.0019735994513036424
50 0.0009695078412425359 0.00032828407920262485

100 5.810412165240707e-05 3.3712669171100434e-05

LOO

10 0.06441228805671287 0.02983249572073058
25 0.004889201034083178 0.0015926262230617281
50 0.0007514407910041975 0.0002294331073810647

100 5.810271735398184e-05 3.371157080158845e-05

Table 4.2: Learned Length Scale (ℓlearned) by model selection method and number of
training points under no noise and added noise conditions.

Models’ captured length scale
ℓ f eature = 1.0, Signal Variance = fixed

Method TP Learned Lengthscale (No Noise) Learned Lengthscale (Noise = 0.1)

LML

10 2.21359821957543 1.6862319955084466
25 2.2677487543450696 1.6915396718245332
50 2.3138344119741827 1.742200501800853
100 2.3366260965370373 1.7714383647418939

CLML

10 2.142828335448164 1.7260308749405557
25 1.050164608266219 1.7188033004378416
50 1.287520071859623 1.7740613940858108
100 1.0000093099870722 1.7798498872068969

LOO

10 1.316590119200558 1.4260246216416486
25 1.5192539507939942 1.0350522809262366
50 1.3674334911624277 1.1633541219465222
100 1.0000044303882052 1.3310662920366763

Model performance with different hyperparameter settings

The model’s ability to learn the ℓ f eature is displayed in line plots for three methods over
different settings of hyperparameters, such as several training points, noise levels, number
of restarts, various feature length scales, signal variances, etc.
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Learned Length Scale Over Number Of Points

Figure 4.1 contrasts the behavior of various approaches to Gaussian Process Regres-
sion’s length scale learning as training data increases (from 2 to 40). The conventional
Log Marginal Likelihood method (Plot a) produces stable but consistently overestimated
values, which converge above 2. However, with small datasets, the Conditional Log
Marginal Likelihood (Plot b) and Leave-One-Out Cross-Validation (Plot c) approaches
exhibit greater variability, although they converge closer to the feature length scale of 1.0,
at about 1.5. This implies that these alternative approaches might be more resistant to
overestimation, despite being more unpredictable initially. Every method exhibits sensi-
tivity to dataset size, particularly when there are only a few data points (roughly 10).

Figure 4.1: Behavior of length scale estimation across methods as training data increases

Experiments using different levels of noise

Figure 4.2 illustrates how the learned length scale in GPR behaves across three optimiza-
tion approaches as the training size increases (up to 40 points) and under varying Gaussian
noise levels (σ2

n = 1e-10, 0.01, 0.1, 0.2). Given that the input feature length scale (ℓ f eature)
is 1.0, and the signal variance (σ2

f ) is fixed (variance 1.0 with bounds (1.0, 1.0)). The LML
approach overestimates the true value even at low noise levels, demonstrating a sharp rise
in the learned length scale with small sample sizes before stabilizing between 2.2 and 2.6.
LOO exhibits high variance at small sample sizes but stabilizes at 20 points. LML con-
sistently overestimates the true length scale, even though it provides stable estimates. On
the other hand, conditional LML and LOO generate values that are more reliable when
applied to realistic data because they are closer to the true parameter.

In general, as the quantity of training points grows, the learned length scale tends to
stabilize, suggesting that more data provides a more consistent estimate of the underlying
function’s smoothness. The effect of noise on the learned length scale is also apparent,
though the specific trends vary across the different model selection methods. This analysis
highlights the importance of considering these factors when applying GPR to real-world
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datasets.

Figure 4.2: Learned length scale (ℓlearned) in GPR as a function of the number of training
points and noise level, for three model selection methods. Subplots (a), (b), and (c) show
results for LML, CLML, and LOO, respectively. Within each subplot, the learned ℓlearned
is plotted for four noise levels: 10−10 (black), 0.01 (blue), 0.1 (red), and 0.2 (purple).
Each line connects data points representing the learned length scale for a given number of
training points at the specified noise level.

Experiments using different numbers of restarts

Figure 4.3 shows how the learned length scale in GPR changes with the number of op-
timization restarts for three methods. LML is stable across different numbers of restarts,
suggesting minimal benefit from multiple initializations. Conditional LML shows slight
improvements in stability with more numbers of restarts, especially at lower sample sizes.
LOO is the most sensitive to the number of restarts, with high variance at small sam-
ple sizes and notable stabilization as the number of restarts increases. At 10 number of
restarts, LOO yields more consistent length scale estimates. These numbers of restarts
improve robustness in Conditional LML and LOO, but have a limited effect on LML.

Figure 4.3: illustrates learned length scale (ℓlearned) of a GPR model as a function of the
number of training points, for different numbers of optimization restarts. Subplots (a), (b),
and (c) display results for the LML, CLML, and LOO methods, respectively. Within each
subplot, lines represent different numbers of optimization restarts: 1 (black), 2 (blue), 3
(red), 5 (pink), and 10 (green).
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Experiments using different feature length scales

Figure 4.4 illustrates how the learned length scale ℓlearned in GPR varies with the true
feature length scale ℓ f eature for each of the three estimation methods. When ℓ f eature is
long (e.g., 10.0), all methods initially overestimate ℓlearned , particularly when the number
of training points is limited. LML tends to overestimate early but stabilizes as more data
becomes available. CLML shows more pronounced fluctuations and persistent overesti-
mation, especially for long ℓ f eature. LOO initially produces highly variable estimates, but
its behavior becomes more stable and moderate with additional training points. Across
methods, the precise recovery of ℓ f eature becomes increasingly difficult as its true value
increases. The results suggest a strong influence of ℓ f eature on the learned length scale;
models trained on smoother (longer-scale) features tend to infer smoother functions, es-
pecially with limited data.

Figure 4.4: Learned length scale (ℓlearned) of a GPR model as a function of the number of
training points, for different values of a feature length scale parameter, keeping noise to a
minimum and variance fixed. Within each subplot, lines represent different feature length
scale values: 0.5 (black), 1.0 (blue), 2.0 (red), 5.0 (purple), and 10.0 (green).

Experiments using different signal variances

In Figure 4.5, LML (panel a) produces consistent and interpretable length-scale estimates
across different signal variances (σ2

f = 0.5, 1.0, 3.0, 5.0). As the number of training points
increases, estimates stabilize around 15–20 points, showing early convergence. At TP =
40, LML maintains a clear separation between signal variances, indicating strong sen-
sitivity to the underlying signal-to-noise structure. This makes LML statistically robust
for hyperparameter tuning. In contrast, CLML (panel b) yields highly unstable results,
length scale estimates vary unpredictably and often overlap across σ2

f values, even with
more data. This suggests poor reliability and weak sensitivity to signal variance. LOO
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(panel c) shows better performance than CLML, but still suffers from high variability with
fewer than 15 training points. While estimates stabilize beyond 30 points, they tend to
converge toward similar values, reducing signal variance distinction.

Figure 4.5: The plots illustrate how the learned length scale of a GPR model changes
with an increasing number of training points for varying signal variance (σ2

f ). Three
different estimation methods are compared: (a) Log Marginal Likelihood, (b) Conditional
Log Marginal Likelihood, and (c) LeaveOneOut. Each line represents a different signal
variance (σ2

f ) setting ranging from 0.5 to 5.0.

Experiments using different initial kernel length scales

In Figure 4.6, across three methods, the learned length scale converges close to the feature
length scale with more training data, but the influence of the initial kernel length scale has
less effect on all three methods. As all the methods optimize the learned length scales, the
initial kernel length scale has minimal effect on learning the length scales.

Figure 4.6: Length scale learned by GPR over varying numbers of training points with
different initial kernel length scale (ℓinit) settings. Each line represents a different initial
length scale value ranging from 0.5 to 5.0.
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Learned Length Scale Over Number Of Restarts

The plots in Figure 4.7 show that for LML (a), the learned length scale quickly stabilizes
around 2.2 and remains consistent across restarts. CLML (b) also shows rapid stabiliza-
tion around 2.2 after a few restarts. Similarly, Leave-One-Out (c) converges to approx-
imately 2.3 after an initial increase within the first few restarts. Increasing the number
of restarts beyond a small number (around 5-10) does not significantly alter the learned
length scale for these methods.

Figure 4.7: Length scale learned by GPR over varying numbers of training points with
varying number of restart settings. Each black represents a different number of restarts,
ranging from 2 to 50.
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4.2 Effect of ARD on feature importance in multi-dimensional
Gaussian Process Regression

Learned length scales of two input features

Table 4.3 illustrates how the three GPR optimization approaches learned the length scales
of two input features over various TP. All methods show significant overestimation of
length scales when the dataset is minimal (e.g., at 2–5 TP), especially with LML, where
values exceed 50. As the number of TP increases, the estimates stabilize and approach
the actual values. The convergence trend is consistent across all three methods, ranging
from 1.8 to 3, though LML generally exhibits higher variability at low sample sizes.

Table 4.3: Learned length scales (ℓ1
learned ,ℓ2

learned) for two input features over varying
numbers of training points (TP) using three inference methods: LML, CLML, and LOO.
The true feature length scales are set to (1.0,1.0), with no signal variance and a micro-
scopic noise level (10−10), under an RBF kernel.

ARD of two features
(Noise: 1e-10, Signal Variance: none, Kernel: RBF, L f eature: (1.0, 1.0) )

TP LML CLML LOO
ℓ1

learned ℓ2
learned ℓ1

learned ℓ2
learned ℓ1

learned ℓ2
learned

2 8.2809 1.1046 0.9695 1.0001 0.9623 0.8793
3 55.0061 31.2800 50.7345 24.4833 38.0151 21.8486
4 23.4654 11.3973 32.3006 11.3954 33.1353 11.8402
5 5.1865 13.7659 4.8776 13.8908 14.7603 14.4414
6 2.9308 3.3722 2.9308 3.3721 3.3028 11.5893
7 2.4847 2.2210 2.2004 2.5085 2.3476 3.5714
8 1.9254 2.0128 1.9254 2.0128 1.9630 3.6305
9 2.1579 1.9340 2.1579 1.9340 2.6054 1.9722
10 2.3012 1.9860 2.3029 1.9869 2.9535 2.2680
20 2.3426 2.3487 2.3534 2.3589 2.6074 2.8265
30 2.5013 2.5126 2.5238 2.5426 2.5070 2.5726
40 2.5784 2.5677 2.6458 2.6139 2.5728 2.4948

Visualizing Input Relevance Learned by ARD

The relative feature relevance, as assessed by ARD, is visually compared in these bar
charts 4.8. Substantial differences are observed in low-observation settings, particularly
for LML and CLML, where ℓ1

learned significantly predominates, signifying uncertainty in
feature selection. As data grows, both length scales shrink and level out around the true
value. The bar format supports the steep drop in overestimation and the convergence of
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learnt hyperparameters for all methods.

Figure 4.8: Bar plots illustrating the learned length scales (ℓ1
learned , ℓ2

learned) across dif-
ferent numbers of training points using three methods. Each subplot compares the mag-
nitudes of the two learned length scales per observation count.

Effects of varying feature length scale two and number of training
points on learned length scales

Table 4.4 explores how learned length scales ℓ1
learned and ℓ2

learned in GPR’s ARD frame-
work, which indicate feature relevance, vary with training data and feature length scales.
For LML, ℓ1

learned ranges from 1.76 to 55.01, demonstrating substantial variation in fea-
ture 1’s relevance across conditions. Similarly, CLML shows a range of 0.96 to 45.24
for ℓ1

learned . LOO exhibits the widest range for ℓ2
learned (0.88 to 50.49), suggesting greater

instability in estimating feature 2’s influence with this method, especially with fewer data
points.

As the number of training points (TP) increases from 3 to 20, the learned length scales
generally tend to stabilize, converging towards more consistent values. This indicates that
more data leads to improved and more reliable estimation of feature relevance. However,
the rate and extent of this stabilization vary across the three model selection methods.

Furthermore, the feature length scale parameter ℓ f eature significantly influences the
learned length scales. For instance, when ℓ f eature is small (e.g., 0.5), the learned length
scales can exhibit greater variability, implying that the model assigns more distinct rele-
vance to the two features. Conversely, as ℓ f eature increases (e.g., to 3.0), the learned length
scales tend to become more similar, suggesting that the model considers the two features
to be more equally relevant.

35



Table 4.4: Learned length scales (ℓ1
learned ,ℓ2

learned) for two input features under ARD in
GPR, evaluated using three model selection methods: LML, CLML, and LOO. The table
shows results for varying numbers of training points (TP) and different feature length scale
parameters of one dimension ℓ2

f eature while keeping the other dimension ℓ1
f eature fixed to

1.0. The GPR model employs the RBF kernel, with a noise level of 10−10 and no signal
variance.

ARD of two features
(Noise: 1e-10, Signal Variance: none, Kernel: RBF, L f eature1: 1.0 )

TP ℓ2
f eature LML CLML LOO

ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned

3

0.5 6.0316 35.2228 1.8711 28.7998 11.4776 16.1870
1.0 55.0061 31.0756 45.2430 25.7052 47.4489 21.8523
2.0 26.0613 36.2234 21.7561 36.2510 23.2565 41.9731
3.0 36.1075 23.7987 31.7970 23.8270 33.1728 41.6348

4

0.5 11.1987 52.1904 11.1987 52.2030 11.3425 38.8321
1.0 23.4654 11.3973 31.0460 11.3954 33.1342 11.8400
2.0 11.7847 24.1009 11.7847 24.1005 14.0257 22.9416
3.0 11.8742 29.3687 11.8742 29.3686 23.8165 50.4921

5

0.5 24.6916 1.2433 24.6916 1.2433 20.8833 22.0024
1.0 5.1865 13.7659 4.8776 13.8908 14.7535 14.4407
2.0 4.0563 24.9554 4.6273 15.2408 12.4282 32.5020
3.0 4.5390 27.9107 4.5388 27.9106 2.6806 16.2728

6

0.5 1.7560 21.1730 1.7201 21.2437 1.7396 21.2040
1.0 2.9308 3.3722 2.9308 3.3722 3.3029 11.5893
2.0 1.8060 15.5062 1.9492 5.8767 5.6786 14.8991
3.0 1.8905 9.7843 1.8905 9.7843 1.9492 11.5698

8

0.5 2.3004 2.1469 2.1736 1.1516 1.7469 3.5296
1.0 1.9254 2.0128 1.9254 2.0128 1.9630 3.6305
2.0 1.9010 7.5481 1.9010 7.5482 3.2716 10.4824
3.0 2.0041 7.1168 2.0041 7.1168 2.4410 17.0115

10

0.5 3.4084 0.9116 3.4499 0.9123 4.1003 0.9343
1.0 2.3012 1.9860 2.3029 1.9869 2.9535 2.2681
2.0 2.0988 4.1023 2.0971 4.0924 2.5193 4.8339
3.0 2.1560 6.4037 2.1547 6.4042 2.9158 16.3092

15

0.5 2.0171 1.0067 2.0179 1.0067 2.1211 1.0724
1.0 2.1861 2.1979 2.1890 2.2005 2.2601 2.1436
2.0 2.3647 4.5312 2.3668 4.5291 2.7062 4.9166
3.0 2.4163 6.7355 2.4192 6.7340 2.6372 6.6868

20

0.5 2.1232 1.0905 2.1311 1.0954 2.2287 1.2062
1.0 2.3426 2.3487 2.3534 2.3589 2.6076 2.8265
2.0 2.4600 4.7676 2.4791 4.7946 2.1728 4.7178
3.0 2.4839 7.0607 2.5056 6.9251 2.2706 6.4757
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Effects of varying noise level (σ2n) and number of training points on
learned length scales

Table 4.5 shows how variations in noise variance (σ2
n ) and the number of training points

(TP) influence the learned length scales (ℓ1
learned and ℓ2

learned) in Gaussian Process Re-
gression (GPR) with Automatic Relevance Determination (ARD). Both feature length
scales (ℓ1

feature and ℓ2
feature) are fixed at 1.0, allowing the analysis to isolate the effects of

noise and data quantity on the inferred feature relevance. The results indicate that the
learned length scales are sensitive to noise variance. For example, under the LML crite-
rion, ℓ1

learned ranges from 2.05 to 36.01, reflecting how the model’s perception of feature
1’s relevance shifts with noise. A similar sensitivity is observed for ℓ2

learned, implying that
increased noise can obscure or exaggerate a feature’s importance.

An increase in training points generally contributes to more stable estimates of the
learned length scales, though the degree of stabilization varies by method. In the case of
Leave-One-Out (LOO), substantial fluctuations are observed for small training sets (TP =
4–6), which diminish as more data is introduced. This trend suggests that larger datasets
enhance the robustness of relevance estimation, particularly for methods like LOO that
are sensitive to training data perturbations. The analysis highlights that noise variance
significantly impacts length scale estimation in GPR with ARD. Furthermore, increasing
the number of training points can mitigate this effect, leading to more consistent and
interpretable relevance assessments, especially when the true feature length scales are
known and fixed.
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Table 4.5: Learned length scales (ℓ1
learned ,ℓ2

learned) for two input features under ARD in
GPR, evaluated using three model selection methods: LML, CLML, and LOO. The table
shows results for varying numbers of training points (TP) and different noise levels (σ2

n ),
keeping feature length scale parameters of both dimension ℓ2

f eature and ℓ1
f eature fixed to

1.0. The GPR model uses a Radial Basis Function (RBF) kernel, with no signal variance.
ARD of two features

(Signal Variance: none, Kernel: RBF, (ℓ1
f eature: 1.0, ℓ2

f eature: 1.0) )
TP σ2n LML CLML LOO

ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned

4

1e-05 32.3006 11.3955 32.3006 11.3955 33.1348 11.8401
0.01 23.0281 11.4384 27.4236 11.4305 13.4314 11.8410
0.1 36.0114 30.9881 31.7120 31.0666 21.8995 11.2135
0.2 21.5146 41.0586 21.5170 41.0208 30.7336 11.3967

5

1e-05 5.2418 13.7670 4.9328 13.8918 14.7588 14.4414
0.01 3.1850 22.8643 3.1850 22.8642 4.5268 14.4755
0.1 13.2370 31.7362 13.2370 31.7361 2.8210 13.7162
0.2 4.9363 50.8201 4.9358 49.9821 2.4362 30.6263

6

1e-05 2.9315 3.3747 2.9315 3.3747 3.3029 11.5893
0.01 3.4482 12.2990 3.4482 12.2990 2.6255 12.5127
0.1 4.0505 13.0258 4.0505 13.0258 2.2694 21.4720
0.2 6.9305 22.4732 6.9292 22.4732 2.2895 21.6449

8

1e-05 1.9242 2.0200 1.9242 2.0200 1.9626 3.6303
0.01 11.7266 2.0202 1.9052 2.1544 1.6344 2.3769
0.1 12.2903 3.0008 12.4051 2.4183 11.4536 1.7477
0.2 22.3408 4.4845 22.3408 4.4839 11.8434 1.7345

10

1e-05 2.3159 1.9843 2.3178 1.9851 2.9530 2.2679
0.01 2.7821 2.0473 2.8180 2.0402 2.8039 1.8599
0.1 4.1235 2.0960 3.5659 2.1284 1.9366 1.6250
0.2 23.1421 11.9042 16.2727 2.5230 1.9117 1.4066

15

1e-05 2.1822 2.1909 2.1851 2.1934 2.2601 2.1435
0.01 2.0580 2.0772 2.0596 2.0788 1.7285 1.7350
0.1 2.4401 2.6595 2.4208 2.7248 1.6262 1.4804
0.2 2.6451 4.0330 2.3562 4.2754 1.6979 1.4601

20

1e-05 2.3174 2.3194 2.3285 2.3298 2.6077 2.8265
0.01 2.1081 2.1088 2.1104 2.1083 1.8182 1.7976
0.1 2.2653 2.1075 2.4236 2.0881 1.5721 1.5560
0.2 3.2650 2.4941 3.2380 2.4635 1.4766 1.4768
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Effects of varying signal variance (σ2
f ) and number of training points

on learned length scales

Table 4.6 presents learned length-scales (ℓ1
learned, ℓ2

learned) generally decrease with increas-
ing TP (number of training points), suggesting improved identification of feature rele-
vance as more data becomes available. For instance, under LML with σ2

f = 0.5, ℓ1
learned

drops from 14.44 (TP=4) to 2.04 (TP=20), indicating a shift from perceived irrelevance
to relevance. This pattern holds across all methods, though the rate and extent vary. LML
and CLML often yield similar results, but can diverge significantly under certain condi-
tions (e.g., TP=8, σ2

f = 2.0: LML = (9.04, 2.27), CLML = (2.37, 2.42)), showing that
CLML’s approximation may break down in complex cases (where the GP posterior be-
comes too sharp, noisy, or underdetermined). LOO tends to overestimate length-scales,
especially at low TP, suggesting a more conservative relevance estimate. For example, at
TP=4, LOO gives ℓ1

learned ≈ 33, compared to LML/CLML values around 13–14. As TP
increases, LOO values converge closer to those from LML and CLML, but often remain
larger.

Across all methods, ℓlearned more than 1.0 implies weak inferred relevance. For TP
≥ 8, values typically fall to 1.5–3.5, indicating improved but imperfect identification of
the true relevance. Importantly, optimization criteria can lead to differing conclusions
(e.g., TP=8, σ2

f = 2.0: LML suggests feature 2 is more relevant, CLML sees both as
equally relevant, LOO favors feature 1). Signal variance (σ2

f ) also interacts with TP and
the optimizer, influencing length-scales non-monotonically. For example, under LML at
TP=4, increasing σ2

f from 0.5 to 3.0 raises ℓ2
learned from 11.11 to 22.89.

Finally, ARD-based relevance inference is sensitive to data availability, signal variance,
and the optimization method. While LML and CLML diverge in key settings, LOO offers
conservative estimates but converges with more data.
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Table 4.6: Learned length scales (ℓ1
learned ,ℓ2

learned) for two input features under ARD in
GPR, evaluated using three model selection methods: LML, CLML, and LOO. The table
shows results for varying numbers of training points (TP) and different signal variances
(σ2

f ), keeping feature length scale parameters of both dimension ℓ2
f eature and ℓ1

f eature fixed
to 1.0. The GPR model uses a Radial Basis Function (RBF) kernel, with a microscopic
noise of 10−10.

ARD of two features
(Noise: 1e-10, Kernel: RBF, (ℓ1

f eature: 1.0, ℓ2
f eature: 1.0) )

TP σ2 f LML CLML LOO
ℓ1

learned ℓ2
learned ℓ1

learned ℓ2
learned ℓ1

learned ℓ2
learned

4

0.5 14.4422 11.1134 14.2886 11.1488 33.0983 11.8363
2.0 13.4436 12.5090 13.4436 12.5090 33.1560 11.8426
3.0 13.1550 22.8922 14.1320 13.0696 33.1616 11.8430

5

0.5 12.2089 12.6961 12.2089 12.6961 14.0612 14.3762
2.0 9.3837 5.4177 6.2453 15.3148 15.6402 14.5151
3.0 11.2971 6.4512 7.4100 16.3369 16.2131 14.5603

6

0.5 1.7087 12.4739 1.7087 12.4739 3.3016 9.6227
2.0 4.8567 3.2604 4.3072 3.3666 3.3035 11.5891
3.0 5.2101 3.9146 5.2101 3.9145 3.3038 11.5891

8

0.5 1.5644 1.6454 1.5644 1.6454 1.9402 3.6195
2.0 9.0355 2.2736 2.3714 2.4193 1.9791 3.6359
3.0 2.6720 2.6756 2.6720 2.6756 1.9849 3.6373

10

0.5 1.9112 1.6719 1.9213 1.6787 3.0482 2.2682
2.0 2.7417 2.3191 2.7352 2.3145 2.9473 2.2608
3.0 3.0137 2.5240 3.0026 2.5166 2.9518 2.2594

15

0.5 1.8875 1.9015 1.8990 1.9124 2.2213 2.1138
2.0 2.4853 2.4852 2.4812 2.4815 2.2891 2.1670
3.0 2.6608 2.6498 2.6536 2.6433 2.3022 2.1778

20

0.5 2.0383 2.0514 2.0630 2.0751 2.4292 2.6825
2.0 2.6053 2.6095 2.6066 2.6099 2.6292 2.6647
3.0 2.7454 2.7494 2.7426 2.7453 2.6842 2.6695

Effects of varying number of restarts and number of training points
on learned length scales

Table 4.7 investigates the influence of optimization restarts (2–10) on ARD-estimated
length-scales in a GPR model with fixed signal variance and near-zero noise. Using LML,
CLML, and LOO criteria across varying training points (TP), it was observed that CLML
produced highly stable length-scales regardless of restart count. In contrast, LML and
LOO showed sensitivity, particularly LML at TP=8, where ℓ1

learned increased from 1.93 (2
restarts) to 9.51 (10 restarts). Similarly, LOO at TP=6 saw large swings in both ℓ1

learned

and ℓ2
learned, indicating susceptibility to local optima.

40



Table 4.7: This table analyzes an ARD study for a Gaussian Process Regression model
with two features. The model employs an RBF kernel, assumes a very low noise level
(10−10), and uses a fixed signal variance. The true feature length-scales (ℓ1

feature, ℓ2
feature)

are both set to 1.0. The goal of this investigation is to evaluate how varying the number of
optimization restarts (from 2 to 10) influences the learned length-scales (ℓ1

learned, ℓ2
learned).

This is examined under three different hyperparameter optimization techniques across
multiple levels of TP.

ARD of two features
(Noise: 1e-10, Signal Variance: fixed, Kernel: RBF, (ℓ1

f eature: 1.0, ℓ2
f eature: 1.0) )

TP Restarts LML CLML LOO

ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned ℓ1
learned ℓ2

learned

4

2 22.3393 21.3693 31.0460 11.3954 33.1342 11.8400
3 22.3393 21.3693 31.0460 11.3954 33.1342 11.8400
4 22.3393 21.3693 31.0460 11.3954 23.9971 11.9557
5 22.3393 21.3693 31.0460 11.3954 23.9971 11.9557
10 22.3393 21.3693 31.0460 11.3954 23.9976 11.9558

5

2 5.1865 13.7659 4.8776 13.8908 24.5621 13.6252
3 5.1865 13.7659 4.8776 13.8908 24.5621 13.6252
4 5.1865 13.7659 4.8776 13.8908 24.6635 13.8834
5 5.1865 13.7659 4.8776 13.8908 24.6635 13.8834
10 5.1865 13.7659 4.8776 13.8908 32.6709 16.8669

6

2 2.9308 3.3722 2.9308 3.3722 3.3029 11.5893
3 2.9308 3.3722 2.9308 3.3722 3.0673 14.2690
4 2.9308 3.3722 2.9308 3.3722 3.4563 6.0352
5 2.9308 3.3722 2.9308 3.3722 3.4563 6.0352
10 3.2898 3.2985 2.9308 3.3722 10.4969 4.6692

8

2 1.9254 2.0128 2.2156 1.9253 10.7014 6.5236
3 4.8482 1.8840 2.2156 1.9253 10.7014 6.5236
4 4.8482 1.8840 2.2156 1.9253 10.7016 6.5538
5 9.5056 1.7636 2.2156 1.9253 10.7016 6.5538
10 9.5056 1.7636 2.2156 1.9253 10.7016 6.5538

10

2 2.3012 1.9860 2.3029 1.9869 3.1690 2.2786
3 2.3012 1.9860 2.3029 1.9869 3.0971 2.6286
4 2.3012 1.9860 2.3029 1.9869 12.7011 2.9521
5 2.3012 1.9860 2.3029 1.9869 12.7011 2.9521
10 2.3012 1.9860 2.3029 1.9869 22.5781 3.2461

15

2 2.1861 2.1979 2.1890 2.2005 2.2601 2.1436
3 2.1861 2.1979 2.1890 2.2005 2.2601 2.1436
4 2.1861 2.1979 2.1890 2.2005 2.6628 3.0787
5 2.1861 2.1979 2.1890 2.2005 2.6628 3.0787
10 2.1861 2.1979 2.1890 2.2005 2.8441 3.3304
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While increasing TP generally reduced learned length-scales (implying increased fea-
ture relevance), restart count modulated this trend, especially for LML and LOO. At
TP=4, CLML yielded (31.05,11.44), LML (22.34,21.37), and LOO (24–33,∼ 11.8),
reflecting differing relevance conclusions. CLML’s robustness highlights its potential for
being more reliable.

ARD feature importance with 4D inputs

Bar plot 4.9 visualizes ARD for four input features (LS1-LS4) using LML, CLML, and
LOO methods as the number of training points (n) increases. Initially, with few training
points (n=2, n=5), all methods show high variability in learned length scales, with some
features (e.g., LS4, LS3 with LML at n=5) assigned very large length scales, indicating
perceived low relevance. As the number of training points grows to n=20, the length
scales generally decrease and stabilize, better reflecting feature relevance. For exam-
ple, LS4 consistently has a larger length scale, suggesting it is the least relevant feature.
CLML and LOO appear to offer more consistent convergence patterns across the increas-
ing number of training points compared to LML, particularly in sparse data scenarios
(low n). The analysis suggests that sufficient data is crucial for reliable ARD, and method
choice impacts stability.

Figure 4.9: Impact of number of training points and inference method on learned length-
scales. Bar plots showing the learned lengthscales for four input features (LS1-LS4) with
increasing numbers of training points, evaluated using Log Marginal Likelihood, Condi-
tional Log Marginal Likelihood, and LeaveOneOut.
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4.3 Conclusion and discussions

The thesis findings provide a detailed evaluation of GPR with ARD for hyperparameter
tweaking and feature importance assessment. The main findings and conclusions are the
following:

Performance of three optimization methods

• LML is stable but overestimates length scale, resulting in overly smooth function
fits. It is less sensitive to dataset size and noise, but it has difficulty reliably recov-
ering genuine feature length scales, especially when dealing with noisy or sparse
data.

• CLML has substantial variability with small datasets but converges closer to gen-
uine length scales with more data. It is less stable than LML, particularly when
the signal variance is considerable, but it has the potential to be robust in certain
scenarios.

• LOO is the most susceptible to tiny datasets and noise, but it produces more con-
servative and often more accurate length scale estimations when there is enough
data and restarts. It outperforms LML at recovering true length scales in noisy
environments.

Effects of varying size of training points

Increasing the number of training points (TP) enhances the consistency and accuracy of
length scale estimates in all techniques. Small datasets (TP < 10) exhibit considerable
variability and overestimation, but bigger datasets (TP≥ 20) improve convergence to real
values. This emphasizes the need for having enough data for accurate GPR modeling and
ARD-based feature relevance estimation.

Effects of variances and restarts

Increased noise levels (σ2
n ) can lead to smoother perceived functions, thereby masking

feature importance. Leave-One-Out (LOO) is more resistant to noise, especially on mod-
erate to large datasets. Higher signal variance (σ2

f ) increases the learned length-scale (ℓ),
with the LML offering the most stable estimates and the CLML demonstrating instability.

Additional restarts have little effect on LML and CLML, but they improve LOO’s
stability, particularly with smaller datasets. Beyond 5-10 restarts, the gains are minor,
indicating that computational efficiency may be maintained with low restart counts.
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Impact of ARD on multidimensional data

ARD accurately identifies feature importance in multidimensional contexts, with longer
length scales suggesting lesser relevance. However, its performance is heavily reliant on
dataset size and noise level. With sparse data, ARD estimates are unstable, but they sta-
bilize with additional training points, especially for CLML and LOO.

In conclusion, the thesis shows that, by eliminating the need for manual trial-and-error,
ARD and hyperparameter tuning minimize training effort. ARD streamlines the model
and expedites training by automatically detecting and downweighting unnecessary input
features. The model can reuse helpful hyperparameters, such as length scales and noise
levels, when tuning is based on similar datasets, which speeds up convergence. By begin-
ning with known initial values rather than arbitrary guesses, this method not only reduces
computation costs and time but also increases model reliability. Still, model performance
significantly relies on the optimization approach, dataset size, noise, and signal variance.
LOO and CLML outperform LML in recovering real hyperparameters, especially in noisy
or data-scarce circumstances, although ARD improves feature relevance estimates given
sufficient data. These findings help to construct more robust and interpretable surrogate
models for use in scientific computing and engineering.
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CHAPTER 5

Future Works

While the current work shows the potential of GPR on synthetic data utilizing the RBF
kernel, there are various avenues for future research and improvement.

Data dimension:
This thesis work used only up to two dimensions or features to evaluate the three different
hyperparameter tuning methods. A broader or more dimensions could be evaluated to
understand the behavior of those models. Tables and figures may get complicated with
increased dimensions or features, which will induce more challenges for further exten-
sion. Evaluating models’ performance on high-dimensional, noisy, and sparse datasets is
crucial for determining their scalability and practical applicability.

Objective functions:
Three methods (LML, CLML, and LOO) were evaluated during this study. However,
there could be other robust methods available or studied through other studies, which
could be used to compare with the available methods.

Different kernels:
Only the RBF kernel was used in this study, as synthetic data was used and the pattern
was known; however, other kernels were also explored during the literature review. Other
kernels like Periodic, Rational Quadratic, etc, could be used concerning the real-world
data. The pattern lies in the real-world data that may decide the kernels to be evaluated in
future work.

Sparse approximation:
GPR’s inherent computational difficulty presents issues when applied to large-scale datasets
due to its cubic temporal complexity with the number of training points. Future research
could look into sparse approximations of GPR, such as induced point approaches, vari-
ational inference, or stochastic variational Gaussian processes. These approaches strive
to maintain GPR’s interpretability and uncertainty quantification while considerably de-
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creasing computational overhead.

Extended multi outputs:
Furthermore, extending the GPR framework to enable multi-output (more than two) or
structured prediction tasks remains an open topic of discussion. Multi-task GPR models
may capture interdependencies between several target variables, making them particularly
useful in complex system modeling where outputs are naturally interrelated.

Finally, future work on Gaussian Process Regression will benefit greatly from broader
kernel analysis, improved optimization tactics, real-world dataset applications, scalabil-
ity solutions, structured output modeling, and integration with deep learning paradigms.
These developments would make GPR more applicable and versatile in both theoretical
and applied machine learning situations.
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CHAPTER A

Environments

A.1 Environments and implementation details

This section outlines the software tools, optimization techniques, and computational con-
cerns involved in the real-world use of Gaussian Process Regression (GPR) models. The
experimental setup’s clarity and reproducibility are ensured by these specifics.

Libraries and Programming Environment

The following libraries were used in all implementations, which were completed in Python
3.12.4:

• NumPy 1.2.6 and SciPy 1.13.1 for numerical operations, random sampling, and
optimization.

• For a conventional GPR implementation, scikit-learn 1.6 is used with built-in op-
timizers, kernel functions, and GaussianProcessRegressor.

• Matplotlib for data visualization.

All the experiments and codes were conducted in both online and offline environ-
ments. Python environments like Google Colaboratory, Jupyter Notebook, etc., are used
for running experiments and IPython notebooks along with personal computers.

Numerical Stability and Precision

To avoid numerical instability in matrix inversion and Cholesky decomposition, a small
jitter term (e.g., σ2

n I = 10−10) was added to the diagonal of the covariance matrix. This
practice ensures stable computation during training and prediction, especially for near-
singular kernels.
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Reproducibility Measures

Due to the positions of the random samples over the distribution (i.e., the first and last
random sample being on the true function’s mean line), the experimental outcomes varied
a lot compared to those samples that are wide from the mean line of the true function.
Apart from that, a fixed random seed does not represent all the scenarios that are required
to consider.

To overcome this issue, ten random seeds (i.e., 24, 85, 39, 22, 93, 59, 98, 84, 11, 48)
are generated once. Using this fixed set of random seeds, each experiment was conducted
ten times to guarantee the robustness and dependability of the findings. These seeds are
used to independently create training and testing datasets for every iteration, capturing a
wide variety of sampling scenarios. Any anomalies or outliers that might arise from the
randomness of individual datasets can be mitigated by averaging the results over these
ten runs. This method provides a more balanced and statistically representative estimate
of model performance, reducing the risk that conclusions are based on one favorable or
unfavorable split. Moreover, this multi-run strategy reflects a common best practice in
machine learning experiments, where averaging over multiple seeds helps account for
uncertainty introduced by data sampling and initialization.
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CHAPTER B

Foundations

B.1 Probability

Probability is a term that explains the chance of an outcome occurring among others. One
common example of this is the coin toss. Usually, a coin has two sides, mostly called
heads and tails (based on which country’s coin it is). If throwing a coin in the air is an
event (considering that the coin tossing or the coin is a fair one), it should end up with
either heads or tails. Probability is a calculation between 0 and 1 to represent how likely
an outcome may occur per event. Thus, the probability of the outcome (being heads or
tails) for one event is 1

2 or 0.5 (H or T). However, if the coin is flipped 50 or 100 times
(events), the result may vary based on how many times the heads or tails appear.

probability =
Number of favorable outcome occurred

Number of possible outcomes

An example given in Table B.1, a coin was flipped 10 times, where it fell on the heads
(H) side 6 times and tails (T) 4 times. The probability of the outcome of being heads (H)
over tails (T) was calculated at 60% as it occurred 6 times out of 10 times, similarly for
tails it was 40%. Also, according to the theory, the probability calculations of all events
must sum up to 1. For the coin toss case given in the table, it was 0.6 (H) and 0.4 (T),
which adds up to 1.

Table B.1: Probability of Flipping/Tossing a Coin
Coin tossing events Outcome Outcome Frequency Probability

10
H (Heads) 6 P(H) = 6

10 = 60%
T (Tails) 4 P(T) = 4

10 = 40%

Prior Probability

Prior probability refers to the gained knowledge, assumption, or belief about a certain
probability to start with. For example, for any previous few events that have already
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occurred, there should be some calculated probability. However, when that gained prob-
ability or reinforced new information is used for the next few events, it may generate
different probabilities with the help of some new pieces of evidence.

In early 2000, approximately 15 out of 10,000 people were affected by Tuberculosis
(TB) disease. However, in 2023, that rate went down to 14 out of 10,000 people. Thus,
the prior rate of 0.0015 (P(TB) = 0.0015) has been updated with the new information and
evidence.

Posterior Probability

Posterior Probability is just the result of the process mentioned in the prior probability.
The updated probability is the posterior for that event. When the prior belief is taken into
consideration with the observed evidence’s likelihood for an event, the updated estimation
is called a posterior probability.

B.2 Bayes’ Theorem

Back in the 18th century, an English mathematician and Presbyterian minister named
Thomas Bayes first brought this theorem to light. This became a crucial base for the
concept of probability and its statistics. This theory explains the calculation of getting the
posterior or the updated estimation of the probability from the prior belief with the new
evidence.

P(A | B) = P(B | A) ·P(A)
P(B)

where

• P(A | B): Posterior probability (the probability of hypothesis A after considering
the evidence B)

• P(B | A): Likelihood (If A has occurred or is true, then the probability of B happen-
ing)

• P(A): Prior probability (The belief or the assumption probability for A).

• P(B): Evidence (the cumulative or marginal probability of B).
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Also, it can be written as below,

Posterior Probability =
Likelihood Function×Prior Probability

The Evidence

B.3 Expectations

Expectation and Average are quite similar yet different. The average or arithmetic mean
measures the central line of tendency. It represents the sum of a given set of numbers
divided by the set length. While Expectation is a different kind of concept in statistics, it
is related to probability theories. This is a broader average value of the possible outcome
weighted by the probability of the probable outcome of a random variable over many
events. It is the average of a series of events and the possible outcomes from these events,
considering the probabilities of these outcomes.

While average applies to a set of fixed values, expectations related to a random vari-
able and their probability of different possible outcomes. The mathematical terms of
Expectation are as follows,

For discrete random variables -

E[ f ] = Ex∼p(X)[ f (x)] = ∑
X

P(x) · f (x)

(In the case of Conditional Probability)

E[ f ] = Ex∼p(X |Y=y)[ f (x)] = ∑
X

P(X |Y = y) · f (x)

For continuous random variables -

E[ f ] = Ex∼p(X)[ f (x)] =
∫ −∞

∞

p(x) f (x)dx

(In the case of Conditional Probability)

E[ f ] = Ex∼p(X |Y=y)[ f (x)] =
∫ −∞

∞

P(X |Y = y) f (x)dx

where

• E[ f ]: Expectation or expected value

• P(x): Probability of each possible outcome
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• f (x): is a function of possible outcome from the given X

If there are some observations in a set of {x1,x2, . . . ,xn}, then expectation of the function
approximately is,

E[ f ]≈ 1
N

N

∑
n=1

f (xn)

B.4 Variance

Variance refers to the expected quadratic distance between f and its mean E[ f ]. It mea-
sures the scatteredness or spread of the data around its mean. The farther a data point is
from its overall mean, the larger the variance it has compared to all other data points.

Suppose there are 5 people in a room, and their weights (x) are 70 kg, 65 kg, 100 kg,
55 kg, and 110 kg. Thus, the calculation of variance would be like below in Table B.2,

Average or arithmetic mean (µ), Sum of weights
Number of people =

70+65+100+55+110
5 = 80 kg.

Variance Equation:

var[ f ] = E[( f (x)−E[ f (x)])2]

= E[ f (x)2−2 f (x)E[ f (x)]+E[ f (x)2]]

= E[( f (x)2]−E[( f (x)]2
(B.1)
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Table B.2: Calculation of Variance and Standard Deviation of Weights
Person Weight (kg) Deviation from Mean (x−µ) Squared Deviation ((x−µ)2)

1 70 70−80 =−10 (−10)2 = 100
2 65 65−80 =−15 (−15)2 = 225
3 100 100−80 = 20 (20)2 = 400
4 55 55−80 =−25 (−25)2 = 625
5 110 110−80 = 30 (30)2 = 900

Total 2250

Variance(σ2) =
Total Squared Deviation

Number of People

=
2250

5
= 450

Standard Deviation(σ) =
√

Variance =
√

450≈ 21.21

B.5 Co-Variance

Variance calculates the changes over different values of a random variable, such as weights,
in the previous example in Table B.2. However, covariance refers to the amount of change
two variables make together. It can be a positive or negative relation of change, meaning
it has a direction in the relationship of the change. For example, if both variables have
similar directions of change or increase/decrease together, then it has a positive relation.
On the other hand, if one is increasing while the other one decreases, then the relationship
is negative. It is also possible to have no relationship at all, it is called zero covariance.

B.6 Gaussian Distribution

In statistics, the Gaussian distribution is an essential probability distribution. Another
name for the Gaussian distribution is the normal distribution. Gaussian distribution is
a symmetric bell shape in its distribution, meaning most of the data cluster around its
average or mean value. The average value or mean is the peak location; it is the center of
the distribution. This is one of the most widely used topics in statistics.

The probability density function of a normal distribution has two parameters, mean
(µ) or the mean where the center tendency lies, and standard deviation (σ ) or the spread
of the data around the mean.
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The probability density function of a Gaussian Distribution:

N (x|µ,σ2) =
1√

2πσ2
· e−

(x−µ)2

2σ2

where
µ = Mean
σ2 = Variance

1√
2πσ2 = Correction Factor, scaled by σ2

(x−µ)2 = Squared Distance

In a bell curve shape distribution or normal distribution, changing the value for the
mean shifts the center of the bell curve to the left or right. Also, changing the value of
variance stretches or shrinks the bell shape.

Figure B.1: Normal or Gaussian Distribution

B.7 Multivariate Gaussian Distribution

Similar to the Gaussian Distribution but with another parameter dimensionality D, instead
of a single random variable multivariate Gaussian distribution works with D-dimensional
vectors. Also, instead of a mean and a standard deviation, it has two vector parameters
called Mean Vector (µ) and Covariance Matrix (Σ).

If x is a D-dimensional vector, whose values are x = (x1,x2, . . . ,xD)
T , then the formula of

Multivariate Gaussian Distribution is as follows,
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N (x|µ,Σ) = 1

(2π)
D
2 |Σ| 12

· e−
1
2 (X−µ)T Σ−1(X−µ)

where
Σ =Cov[x,x]

and E[x] = µ

B.8 Maximum Likelihood

When working with data and machine learning, the main goal is to construct a model that
can explain most data or observations. These models may have no or multiple parameters.
Different values of these parameters may result in varied outputs for the model. Maxi-
mum likelihood is related to finding the parameter value that maximizes the likelihood of
explaining the observations.

Likelihood is the probability of observing the given data using the parameters of a
model. Likelihood distribution with parameters, P(D|w), where D = (x1,x2, . . . ,xn). Max-
imum likelihood can be found by drawing this likelihood over each observation and get-
ting the maximum point among all measurements.

Maximum Likelihood is as follows,

WML = argmax
w

P(D|w)

thus,

P(D|w) = P(x1,x2, . . . ,xN|w)

=
n

∏
i=1

P(Xi|w)
(B.2)
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Figure B.2: Likelihood, Maximum and Log Likelihood Estimation

B.9 Conditional Marginal Likelihood

Conditional Marginal Likelihood (CML) is a concept used in probability and statistics,
particularly in Bayesian inference and machine learning. CML is useful in Bayesian
models to evaluate how well a model explains observed data while conditioning certain
variables. It helps in parameter estimation, model selection, and improving predictions
by filtering out irrelevant factors.

p(Y | X) =
∫

p(Y | X ,θ)p(θ | X)dθ

where

• Y = observed data (what will be predicted)

• X = given conditions (extra information)

• θ = unknown parameters (hidden factors)

• p(Y|X,θ ) = likelihood of data given parameters

• p(θ |X) = prior probability of parameters given conditions

There are various issues with using marginal likelihood rather than conditional marginal
likelihood. The propensity to either overfit or underfit is a significant problem since
marginal probability may favor models that are too complicated or too simple, which
results in poor generalization.
Furthermore, a high marginal likelihood is useless for evaluating generalization because
it does not always imply improved predictive performance on unknown data. Addition-
ally, it has trouble with hyperparameter adjustment in intricate models like deep learning,
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where performance is greatly impacted by the selection of parameters and priors.
Calculating marginal likelihood is computationally costly, particularly for large-scale
models, because it frequently requires high-dimensional integrations. By conditioning
on pertinent subsets of data, conditional marginal likelihood improves model evaluation
and overcomes these issues.
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CHAPTER C

Additional figures and results

C.1 Experiment with fewer training points and short fea-
ture length scale

Figure C.1 suggests that with a very short feature length scale (ℓ f eature=0.001), and a
few training points (4), the model is fitting the training data very closely at the obser-
vation points, as shown by the prominent spikes there. The true function exhibits high-
frequency oscillations, posing a challenge for GPR with coarse length-scales. The kernel
length-scale (ℓinit = 0.1) is larger than the feature length-scale (ℓ f eature = 0.001), causing
oversmoothing.

As a result, the model captures the broad structure but fails to reconstruct sharp local
variations. Confidence intervals widen in sparse regions, indicating increased predictive
uncertainty.

Figure C.1: Gaussian Process Regression (GPR) fit using optimizer-based hyperparameter
tuning. The plot displays the GPR prediction (blue line), true function (grey line), training
data (red dots), and 95% confidence interval (shaded area). The optimized Log Marginal
Likelihood (LML) is −4.9558 with an initial kernel lengthscale (ℓinit) of 0.1.
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C.2 Hyperparameter tuning using log marginal likelihood

Table C.1 presents the outcomes of tuning the hyperparameters (ℓ and σ2
f ) of a GPR

model employing a RBF kernel. Two distinct scenarios were investigated: one without
added noise in the training data and another with a noise level of 0.1. A fixed signal
variance means a signal variance of 1.0 added with bounds (1.0, 1.0), which does not
affect the kernel.

In the noise-free case, optimal learned lengthscales and signal variances are sensitive
to the initial values (ℓ f eature, σ2), especially when ℓ f eature is 3.0, where high log marginal
likelihood (LML) values and stable predictions are achieved. For low or high ℓ f eature (0.5
or 5.0), optimization often results in parameter estimations that are linked to lower LML
values and less accurate fits to the actual underlying function, which suggests locally
optimum or inferior solutions. The optimization becomes more resilient when a noise
(σ2

n =0.1) is included. Regardless of initialization, it consistently converges to similar
learnt parameters. Nevertheless, this resilience results in lower LML values, which indi-
cate a worsened model fit as a result of noise. Therefore, while modest noise can lessen
sensitivity to early settings, thorough initialization is crucial in noise-free scenarios.
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Table C.1: Hyperparameter optimization for GPR with RBF kernel under varying noise
levels.

Hyperparameter Tuning
(Training points: 10, Kernel: RBF, ℓ f eature: 1.0)

Hyperparameters Learned Hyperparameters CI LML

ℓinit σ2
f ℓlearned σ2

f µmean(ȳ)±2σmean LML Value

Case: No noise in the input data

0.5
1.0 0.5 1.0 -0.3597 – 0.4354 -1.7935
2.0 0.5 2.0 -0.5243 – 0.6001 -4.5881
5.0 0.5 5.0000 -0.8511 – 0.9268 -8.7668

1.0
1.0 1.0 1.0 0.0204 – 0.0588 9.6592
2.0 1.0 2.0 0.0124 – 0.0668 6.8216
5.0 1.0 5.0000 -0.0033 – 0.0826 2.6170

3.0
1.0 2.6458 4.6757 0.0384 – 0.0385 28.9233
2.0 2.6459 4.6769 0.0384 – 0.0385 28.9233
5.0 2.6459 4.6767 0.0384 – 0.0385 28.9233

5.0
1.0 0.0000 0.6019 -1.3278 – 1.3278 -11.5189
2.0 0.0000 0.6019 -1.3278 – 1.3278 -11.5189
5.0 0.0000 0.6019 -1.3278 – 1.3278 -11.5189

Case: Noise (Level = 0.1) added to the input data

0.5
1.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
2.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
5.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228

1.0
1.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
2.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
5.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228

3.0
1.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
2.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
5.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228

5.0
1.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
2.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
5.0 1.4052 0.4887 -0.4405 – 0.4776 -4.5228
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