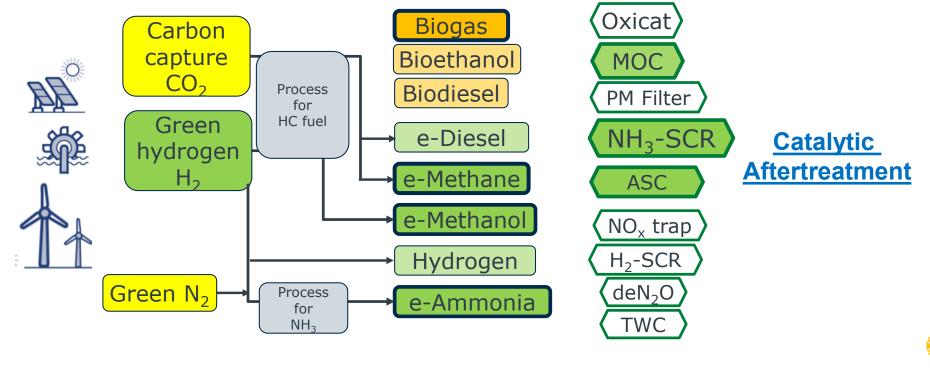


Simulation and design of emission catalysts for marine applications with green hydrogen, ammonia, methanol, methane and diesel fuels

MODEGAT 8

21–23 September 2025 – Bad Herrenalb

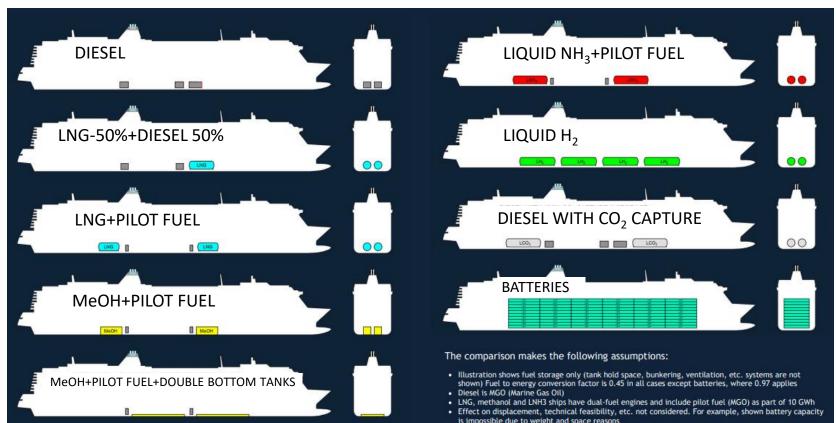
Teuvo Maunula T^{1,2)}, Jan Němec¹⁾, Alireza Kakoee¹⁾, Jari Hyvönen³⁾, Jan Torrkulla³⁾, Viktor Heir³⁾ and Maciej Mikulski¹⁾


¹⁾ University of Vaasa, Technology and Innovations, Energy Technology, Vaasa, Finland

²⁾ University of Oulu, Environmental and chemical engineering, Oulu, Finland

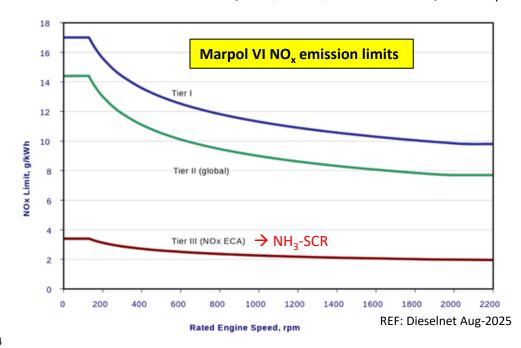
³⁾ Wärtsilä Finland Oy, Vaasa, Finland

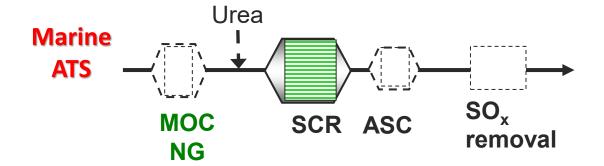
Background


- The emission focus has moved from harmful-to-health pollutants (CO, HCs, NO_x, SO_x, particulates, NH₃) to green house gases (GHG).
- Light-duty cars and other applications are moving fast electric or hybrids, but liquid fuels needed in heavy-duty applications
- Pollutant limits will remain the same or tightened in near future
- Harmonization: Emission limits independent on fuel or engine type (multi-fuel engines)
- Green fuels can decrease (NO_x, SO_x, particulates, other poisons) or increase (NO_x, CH₄, N₂O, NH₃) pollutant emissions
- Green electricity has a key role in the move to carbon-free fuels and energy

Green fuels for marine applications

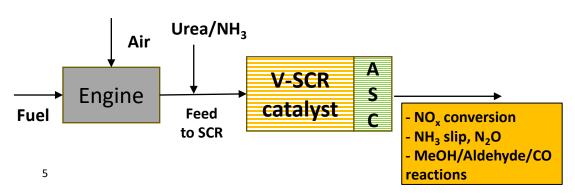
- Carbon neutral targets for year 2050 in marine field (IMO) in many leading industrial countries
- No full electrification in near future for heavier ships due to on-board energy storage capacity partial hybridization possible
- ▶ Energy-dense fuels like liquid methanol (MeOH), methane (CH₄) and ammonia (NH₃) planned to replace diesel in marine applications.
- Fuel cost and consumption are driving commercial force in heavy ship applications.
- Flexible use of fuels necessary by the fuel availability/distribution, engine technology and costs

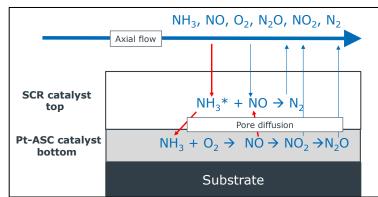


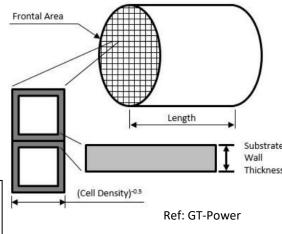

REF: www.foreship.com, Aug 2025

Emission limits and aftertreatment systems

- Marine emission regulations (Tier III latest) for pollutants are not that strict (focus has been on NO_x and SO_x) as in on-wheel applications but the effect of new fuels on emissions requires development and design for catalytic aftertreatment systems (ATS)
- In marine applications, extruded vanadium-SCR catalysts with low cell density and thick walls used for NO_x removal
- In this study, improved capabilities to simulate emission catalyst functionality in marine applications
 - The effect of pore diffusion on catalyst efficiency in extruded V-SCR catalyst
 - Oxidation of NH₃, MeOH, formaldehyde (FA), hydrocarbon and CO on V-SCR and Ammonia Slip Catalysts (ASC) in diesel (REF), MeOH, and NH₃ engine exhaust gas conditions
 - Methane Oxidation Catalysts (MOC) functionality in CH₄ engine exhaust gas conditions.

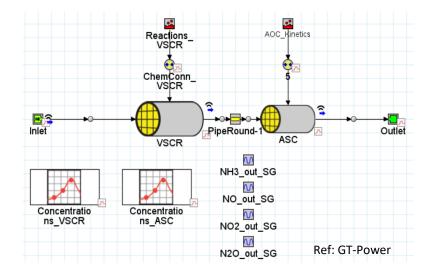






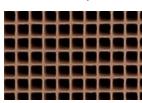
Methods

- Pollutant removal efficiencies on catalysts investigated in single fuel conditions using GT Power program tools.
 - Ready emission catalyst models using modified parameters
 - Volumetric active site density defined by the catalyst (SCR) or active metal (PGM) amounts
- 1D model of flow-through catalysts by defined reactions in GT Power libraries
 - Mass, energy and momentum balances along the channels, quasi-steady flow solver, assumption of a short residence time
 - Possible to simulate pore diffusion (d_{50} 0.1–10 µm) in thick coating layers, effects seen best with high SV (short residence time) range
 - External diffusion built-in (channel diameter/shape in catalyst)
- ASC model based on 2-layer structure and model (top SCR and bottom Pt-DOC)
 - Based on Fe-SCR + Pt-DOC kinetics Pt-layer dominates, thus similar with varying SCR catalysts
 - Pore diffusion essential in 2-layer ASC models- controlling mass transfer and selectivity in layers
- In final V-SCR+ASC simulations, pore diffusion included in both units d_{50} of 0.25 µm for pores



Methods – model validation

- Emission catalyst models in GT Power applied with partly modified kinetic and mass transfer parameters
 - Adjusted parameters by available experimental and publication data in experimental conditions (rates, NH₃ adsorption-desorption)
 - Verification of pore diffusion effects by experimental data with extruded marine V-SCR catalysts (≈ 60 cpsi, V_2O_5/TiO_2-WO_3)
 - Modification and verification of 2-layer ASC model by experimental data on coated catalysts (400 cpsi)
 - Defined reactions and kinetic parameters for MeOH, FA and CO reactions on extruded V-SCR and 2-layer Pt-ASC (Top. Catal. On-line 2025)


Compound	Engine testing typical	SCR simulations Feed	ASC simulations Feed
NO _x , ppm	1500	1425	0
NO ₂ , ppm- 5%/NO _x	na	75 (set)	0
N ₂ O, ppm	na	5 (set)	5 (set)
NH ₃ , ppm	Varied by ANR	Varied by ANR	100
CO, ppm	~90	0*	0*
CO ₂ , %	~6	0*	0*
HC (C ₁) ppm	~170	0*	0*
Water, %	~5	5	5
N_2	balance	balance	balance
Space velocity (SV), h ⁻¹	6000 - 16000	6000 – 60000	100.000-400.000
Flow rate, m ³ /h	varied	varied	varied

Extruded

Coated-400 cpsi

Simulation methods

- Mainly separate simulations for NH₃-SCR (steady state = SS) and oxidation reactions (light-off) on extruded V-SCR and V-SCR+ASC
- NH₃-SCR simulation in SS steps at 200–500 °C for 2–6 min for temperature-ANR (NH₃/NO_x) points \rightarrow criterion deNO_x (10/5 ppm NH₃)
 - Additional temperature ramp test with V-SCR and ASC to simulate transient SCR performance with fixed ANR = 0.9
- ▶ MeOH, FA, CO and HC oxidation reactions simulated in a light-off ramp on V-SCR, ASC and MOC at 0 500/600 °C by the rate of 5 °C/min
- A feed matrix to simulate key reactions and pollutant removal in exhaust gas feeds (not connected to exact real-world engine emissions:

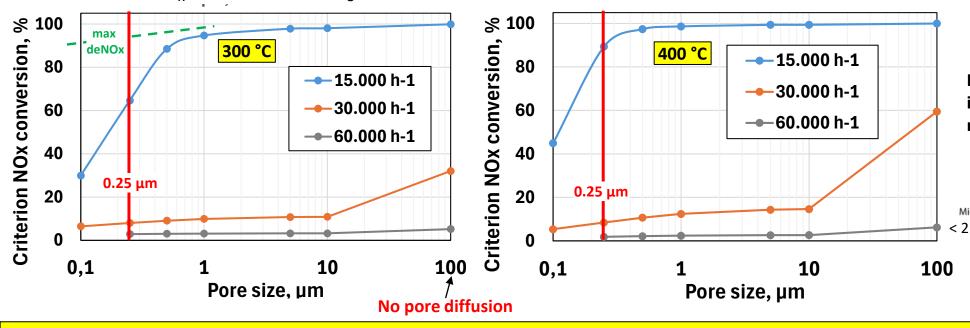
Compound	Diesel	MeOH	CH ₄	NH ₃
NO, ppm	1000	1000	1000	3000
NO ₂ , ppm	50	50	50	150
NH ₃ , ppm	0	0	0	300
CH ₄ , ppm	0	0	1500	0
Ethane, ppm	0	0	300	0
Propane, ppm	0	0	100	0
Propene, ppm	100	0	0	0
Methanol, ppm	0	1200	0	0
Formaldehyde, ppm	20	300	150	0
CO, ppm	500	500	500	0
Oxygen, %	10	10	10	10
Water, %	6	6	8	12
CO ₂ , %	6	6	6	0
Nitrogen	bal.	bal.	bal.	bal.

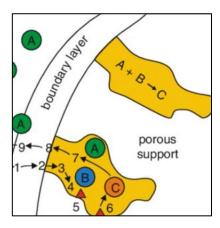
Temp, °C	SV, h-1							
	16000		12000		9000		6000	
200	Alfa1		Alfa8		Alfa15		↑ Alfa22	
250	Alfa2		Alfa9		Alfa16		Alfa23	
300	Alfa3		Alfa10		Alfa17		Alfa24	
350	Alfa4		Alfa11		Alfa18		Alfa25	
400	Alfa5		Alfa12		Alfa19		Alfa26	
450	Alfa6		Alfa13		Alfa20		Alfa27	
500	Alfa7 🕇		Alfa14	'	Alfa21	<i>, </i>	Alfa28	•
Alfa varied: 0.6, 0.8, 0.9, 1.0, 1.1, 1.2 and 1.4 = ANR								

Catalytic reactions

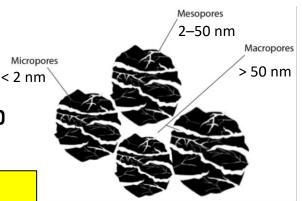
Catalytic reactions by GT Power library (NH₃ adsorption and metal sites, rate equations, inhibition effects (CO, HC, NO) together with added reactions:

$NH_3 + S1 \rightleftharpoons NH_3 - S1$ $NH_3 + S2 \rightleftharpoons NH_3 - S2$	Non-productive adsorption Adsorption enabling SCR	V-SCR catalyst			
$NH_3 + NO + 0.25 O_2 \rightarrow N_2 + 1.5 H_2O$	Standard SCR	ASC			
$NH_3 + 0.5 NO + 0.5 NO_2 \rightarrow N_2 + 1.5H_2O$ $NH_3 + 0.75 NO_2 \rightarrow 0.875 N_2 + 1.5H_2O$	Fast SCR Slow SCR				
$NH_3 + 0.75 NO_2 \rightarrow 0.875 N_2 + 1.5H_2O$ $NH_3 + 1.25 NO_2 \rightarrow 0.875 N_2 + N_2O + 1.5H_2O$	N ₂ O formation by NO ₂ promotion				
$NO + 0.5 O_2 \rightleftharpoons NO_2$	NO ₂ formation				
$NH_3 + 1.25 O_2 \rightarrow NO + 1.5 H_2O$	NH ₃ oxidation to NO				
$NH_3 + 0.75 O_2 \rightarrow 0.5 N_2 + 1.5 H_2O$	NH ₃ oxidation to N ₂				
$CH_3OH + O_2 \rightarrow CO + 2 H_2O$	MeOH oxidation to CO formation	١			
$CH_3OH + O_2 \rightarrow HCHO + H_2O$	MeOH oxidation to formaldehyd	e			
$HCHO + 0.5 O_2 \rightarrow CO + H_2O$	FA oxidation to CO				
$C_3H_6 + 3 O_2 \rightarrow 3 CO + 3 H_2O$	Propene (diesel-HC) oxidation to	CO			
$CO + 0.5 O_2 \rightarrow CO_2$	CO oxidation				


	+ 1.5 O_2 → CO + 2 H_2O + 2.5 O_2 → 2 CO + 3 H_2O	CH ₄ oxidation to CO and CO ₂ on MOC Ethane oxidation to CO on MOC	MOC
2 0	$+3.5 O_2 \rightarrow 3 CO + 4 H_2O$	Propane oxidation to CO on MOC	
CO +	$0.5 O_2 \rightarrow CO_2$	CO oxidation on MOC – fast	

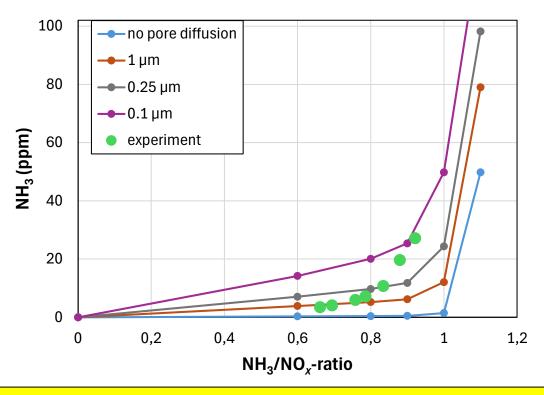


Extruded V-SCR catalyst


• Effect of pore size on diffusion in extruded V-SCR catalyst (60 cpsi / 360 μm walls, catalyst 380 g/L)

Criterion deNO_x% by 10 ppm NH₃ in ANR window

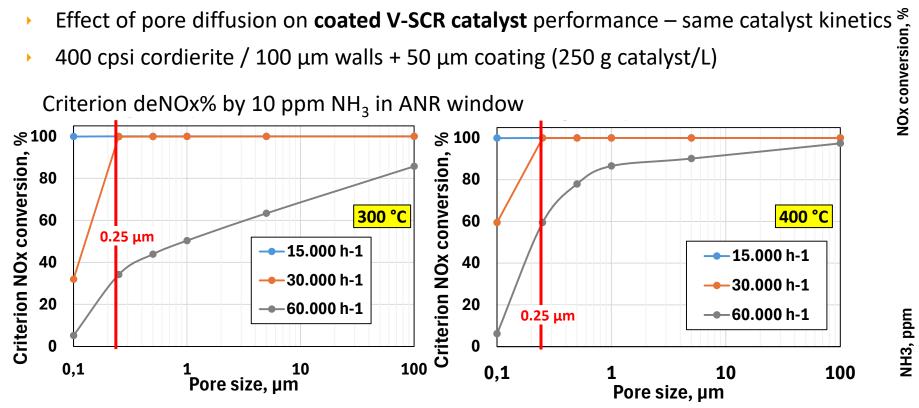
Heterogenous catalytic reactions in porous catalysts (a set of macro-, meso- and micropores)



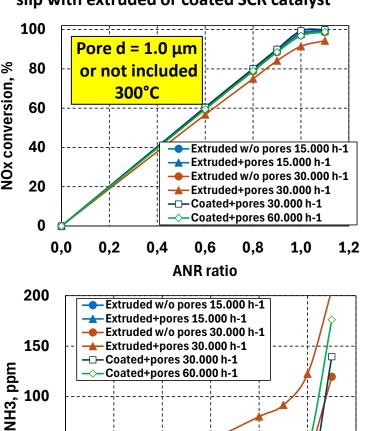
- Pore diffusion more meaningful in thick catalyst walls of extruded SCR catalysts
- SV (space velocity (s^{-1}) , residence time (s) = 1/SV) is the primary variable
- Compared simulations with 30.000 and 15.000 h⁻¹, when reaction times limited
- Possible to reach high NO_x conversions with 30.000 h⁻¹ and d=0.25 μ m but then high NH_3 slip (>10 ppm)
- Pore diffusion limits clearly when pore sizes below 1 μ m with 15.000 h⁻¹ \rightarrow 0.25 μ m used in later simulations

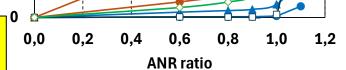
Extruded V-SCR catalyst

Verification of pore diffusion parameters: Experimental vs simulations


- Extruded V-SCR, 60 cpsi
- SV ~ 15.000 h⁻¹ (high range to see effects)
- Temperature ~ 350°C

- When including pore diffusion with smaller pore sizes (100-250 nm) in modelling, NH₃ slip near to experimental
- In addition: tolerances in modelling (kinetic parameters, pores) and experiments (uniformity of NH₃/NO_x, analysis, other)?
- Instead of pore diffusion, possible to adjust active site densities (lumped parameters)

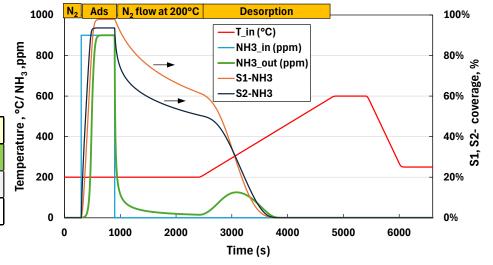

Coated V-SCR catalyst


Criterion deNOx% by 10 ppm NH₃ in ANR window

- Pore diffusion has low effects on a coated substrate of 400 cpsi with 50 μm catalyst layer
- Pore diffusion has small effects on modelling of coated SCR catalyst limitation started at around $60.000 \, h^{-1} \rightarrow often lumped in kinetic parameters in mobile applications$

Effect of pores on NO_x conversion and NH₃ slip with extruded or coated SCR catalyst

50



Extruded V-SCR catalyst - NH3 adsorption capacity

Confirmed NH₃ adsorption capacity (GT Power library) on the V-SCR catalyst (60 cpsi) simulating a NH₃ adsorption-desorption detection method (15.000 h⁻¹)

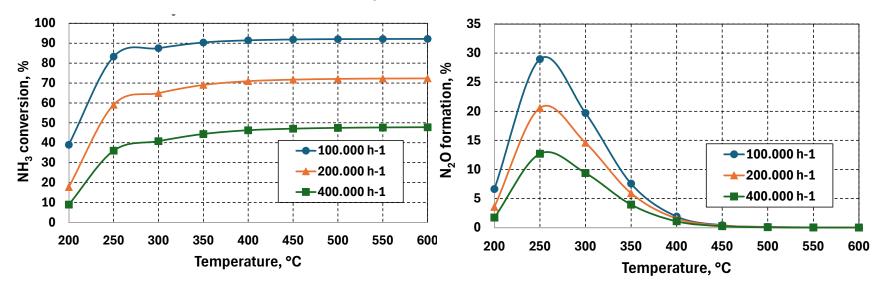
NH₃ adsorption capacity (µmol/g) on S1+S2 sites by temperatures at 200-600 °C

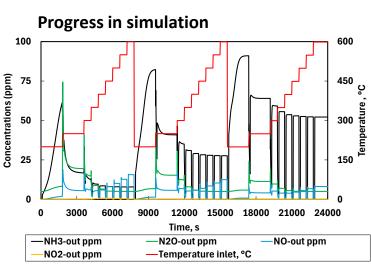
Low, decreasing capacity Increasing capacity Temperature, °C 200 250 300 350 400 450 500 By desorption 47 42 10 0 7 In NH3/N2 flow **78** 69 23 54 37 13

- Adsorption on two sites (S1, S2) in the model and calculated the adsorption capacity and coverage
- Adsorption capacities (μmol/g) matched well to experimental detections on stable V₂O₅/TiO₂-WO₃ catalysts
- It exists three types of NH₃ adsorption strength: 1) Strongly bound (N₂ in gas phase), 2) Strongly + weakly bound (NH₃ in gas phase), 3) NH₃ adsorbed in reaction conditions (NH₃ + NO_x in gas phase) → included in models
- NH₃ adsorption capacity by desorption relates to strongly (chemically) bound NH₃
- NH₃ adsorption capacity promotes SCR activity at low temperatures

not calculated

81

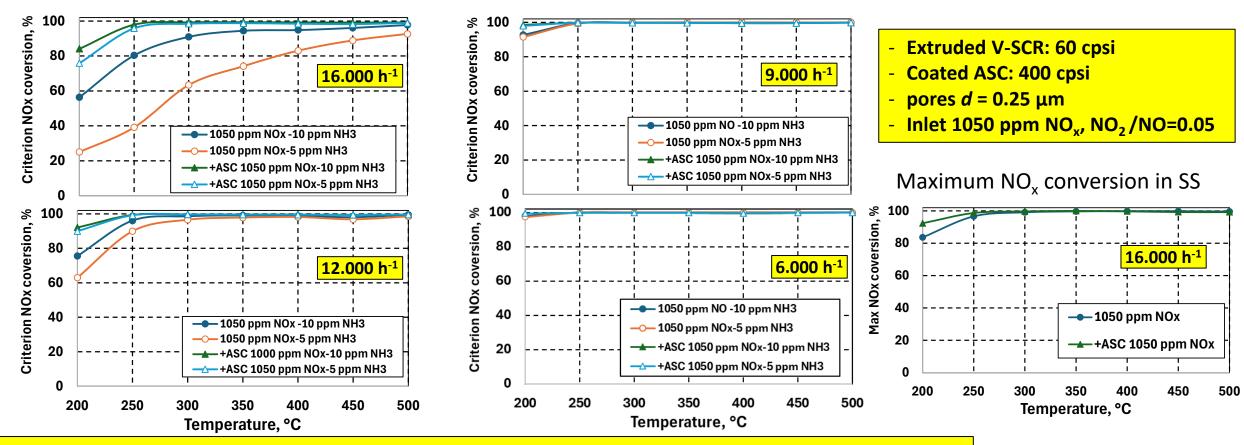

- High volumetric adsorption capacity in extruded V-SCR catalysts (catalyst ≈ 350-500 g/L)



Ads step

Coated Ammonia Slip Catalyst - verification

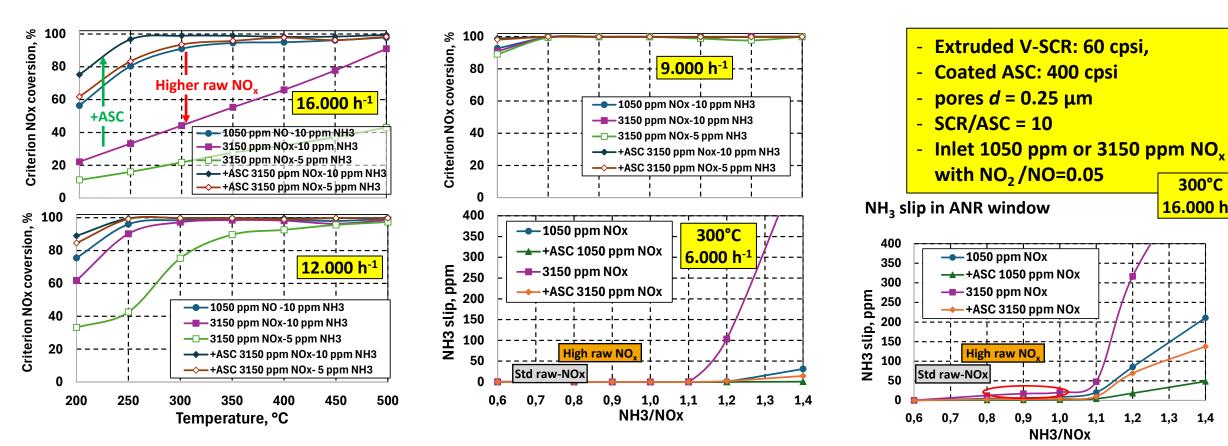
- Modified library parameters (Scheur et al., Appl. Catal. 111-112(2012) 445) to match better to recent experimental results with 2-layer coated metallic/500 cpsi/50 μm (Maunula 2020 Emission Contr. Sci. Tech. 6(2020) 390)
- Simulated first ASC to calibrate NH₃ conversions and selectivity (N₂, NO, NO₂, N₂O) with 100 ppm NH₃ only in ASC feed



- NH_3 conversions similar as detected in experimental conditions, e.g. with 2-3 g/cft Pt based on 2-layer ASC very low volume and Pt loading limits the NH_3 conversion but keep NO_x/N_2O formation acceptable
- N₂O formation range and magnitude realistic for aged ASC GHG formation risk!
- NO_x (mostly NO) had a maximum of 16% at high temperatures with 100.000 h⁻¹

NO_x removal on extruded V-SCR and ASC - simulations

Comparisons by criterion NO_x conversion in SS, when reached 5 or 10 ppm NH_3 slip in SS by SV of 6.000 – 16.000 h⁻¹

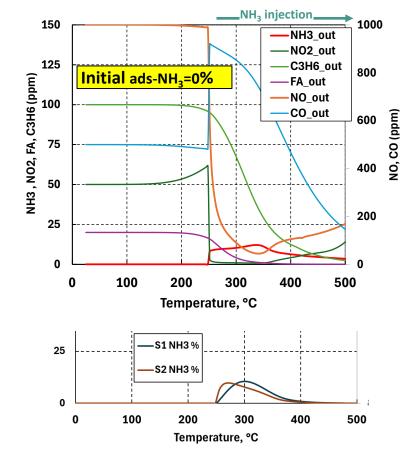


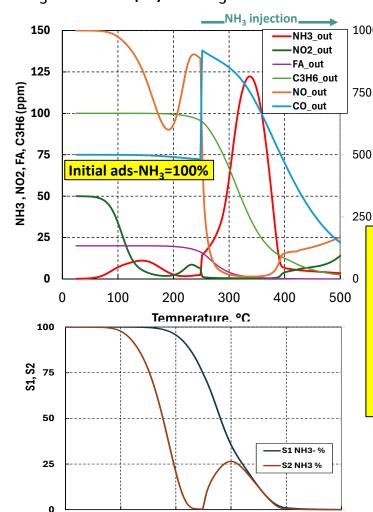
- The range of 6000 16.000 h⁻¹ is the design range for extruded SCR by experiments and simulations
- 5 ppm NH₃ slip criterion shows the sensitivity by SV, a better support to SCR design
- ASC promotes to reach high NO_x conversion with high SV conditions (small SCR catalyst or high flow rate)
- Possible to reach high NO_x conversion with high SV but NH₃ slip start to limit (design, control)

NO_x removal on extruded V-SCR and ASC - simulations

Criterion NO_x conversion in SS, when reached 5 or 10 ppm NH₃ slip in SS - Effect of inlet NO_x concentration

- Higher raw NO_x emissions (e.g. 3×) reported for NH₃ engines, which will require higher SCR efficiency $(deNOx e.g. 80 \rightarrow 95 \%)$
- A promotion by a small ASC enables to reach high NO_x conversion and NH₃ slip targets with high SVs


1.2


300°C

16.000 h⁻¹

NO_x removal on extruded V-SCR – transient simulation

Transient study with V-SCR: **Diesel engine** exhaust gas at 50–500 °C with 20 °C/min, NH₃ injection at 250 °C with **ANR = 0.9**. Two extreme initial states: NH₃ sites empty \times NH₃ sites full.

100

200

300

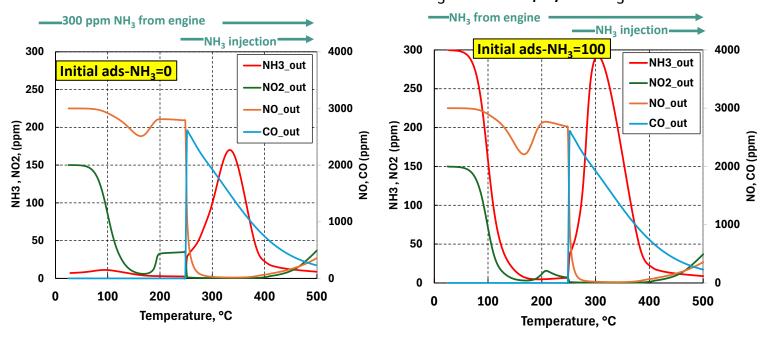
Temperature, °C

400

500

- Extruded V-SCR: 60 cpsi,
- Pore $d = 0.25 \mu m$
- SV 16.000 h⁻¹

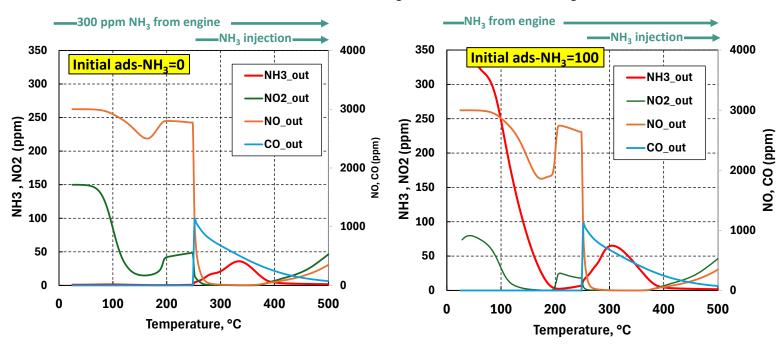
NO, CO (ppm)


- Inlet 1050 ppm NO_x with $NO_2/NO=0.05$

- Simulation in transients showed the effects of NH₃ adsorption and desorption in a heating ramp
- If SCR catalyst full filled with NH₃, quite high NH₃ slip (max 120 ppm) in the heating ramp when
 ANR = 0.9 starts at 250 °C
- If SCR empty from NH₃ at 50 °C, max NH₃ slip was
 10 ppm in this ramp test

NO_x removal on extruded V-SCR – transient simulation

Transient study with V-SCR: **Ammonia engine** exhaust gas at 50–500 °C with 20 °C/min, NH₃ injection at 250 °C with **ANR = 0.9**. Two extreme initial states: NH₃ sites empty \times NH₃ sites full.

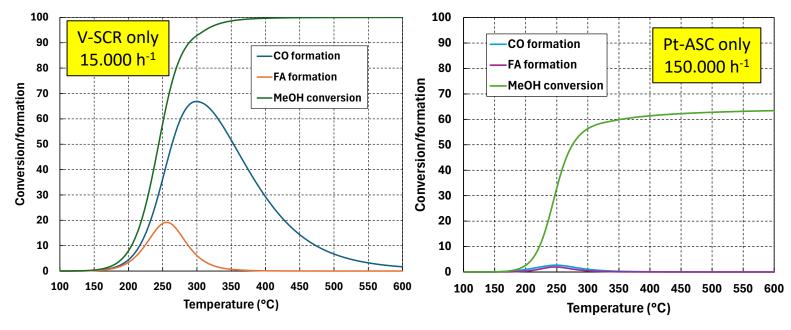

- Extruded V-SCR: 60 cpsi
- Pore $d_{50} = 0.25 \, \mu \text{m}$
- SV 16.000 h⁻¹
- Inlet 3150 ppm NO_x with $NO_2/NO=0.05$

- A higher risk for NH_3 slip when NH_3 from engine and urea injection \rightarrow SCR control to prevent this
- Max NH₃ slip a 165 ppm with zero initial NH₃ and 295 ppm with full-load SCR catalyst
- NH₃-SCR reaction with feed NH₃ starts also before the NH₃ injection at 250 °C

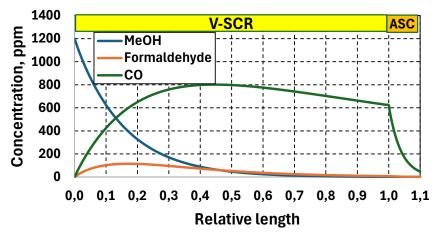
NO_x removal on extruded V-SCR and ASC – transient simulation

Transient study with V-SCR: **Ammonia engine** exhaust gas at 50-500°C with 20°C/min, NH₃ injection at 250°C with ANR=0.9. Two extreme initial states: NH₃ sites empty - NH₃ sites full.

- Extruded V-SCR: 60 cpsi
- Coated ASC: 400 cpsi
- Pore $d = 0.25 \mu m$
- SV 16.000 h⁻¹
- SCR/ASC = 10
- Inlet 3150 ppm NO_x with $NO_2/NO=0.05$


- The presence of ASC prevented well NH₃ and CO slip above 200 °C
- Max NH₃ slip about 60 ppm after NH₃ injection start-up
- "Empty" V-SCR has a good buffering ability to prevent NH₃ emission at low temperatures
- Additional NH₃ adsorption capacity on the zeolite in ASC

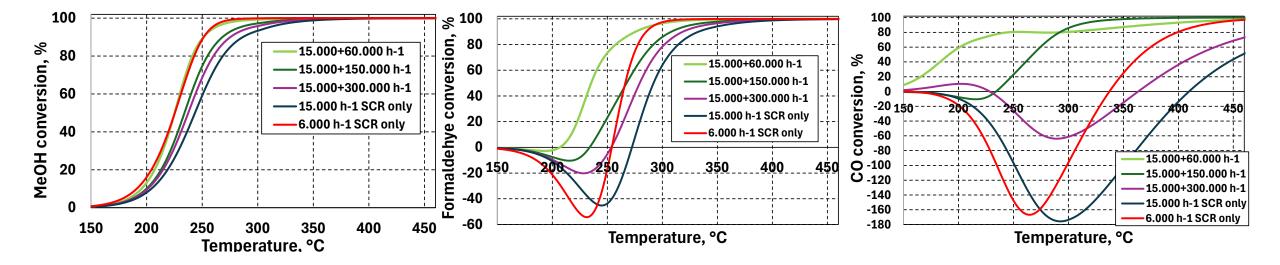
Extruded V-SCR catalyst in MeOH application


MeOH, formaldehyde (FA, HCHO) and CO oxidation reactions added for the V-SCR model

Simulated reactions on extruded V-SCR (60 cpsi, 15.000 h⁻¹) and Pt-ASC (400 cpsi, 150.000 h⁻¹) in MeOH engine exhaust gas, temperature ramp 5 °C/min, **1200 ppm MeOH in feed – no FA/CO**)

- All MeOH and FA reacts through CO to CO₂
- V-SCR catalysts are good in partial HC oxidation and poor in CO oxidation → net CO formation

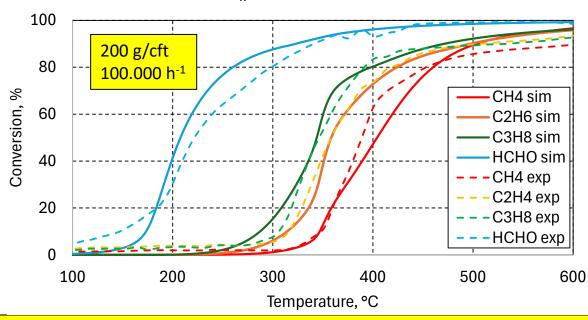
MeOH reactions over the catalyst lengths (V-SCR+ASC) at 300°C



- Investigated MeOH conversion and selectivity separately on V-SCR and ASC
- Small Pt-ASC can prevent well the formation of side reaction products (FA, CO)
- High SV, low Pt loading and pore diffusion prevent to reach near-100% conversions on ASC
- SCR catalyst: ASC = 10 in this verification state

Extruded V-SCR catalyst in MeOH application

Simulation with extruded V-SCR (60 cpsi, 15.000 or 6.000 h⁻¹) and coated ASC - pore diffusion by d_{50} 0.25 µm Simulated reactions on extruded V-SCR (60 cpsi) and Pt-ASC (400 cpsi) in MeOH engine exhaust gas, temperature ramp 5 °C/min, 1200 ppm MeOH, 500 ppm CO and 300 ppm FA in feed


- Investigated the oxidation activities on V-SCR catalyst and ASC by SVs
- T₅₀ with 15.000/6.000 h⁻¹ about 245/225°C for MeOH, 295/265°C for FA and 455/365°C for CO on V-SCR only
- Net formation of FA and particularly CO typical on V-SCR- Max CO formation about same with 6.000 and 15.000 h⁻¹
- Pt-ASC (SCR/ASC = 4–20) able to cut efficiently FA and CO → SCR/ASC ratio of 4 was very efficient

Methane oxidation catalyst (MOC)- model verification

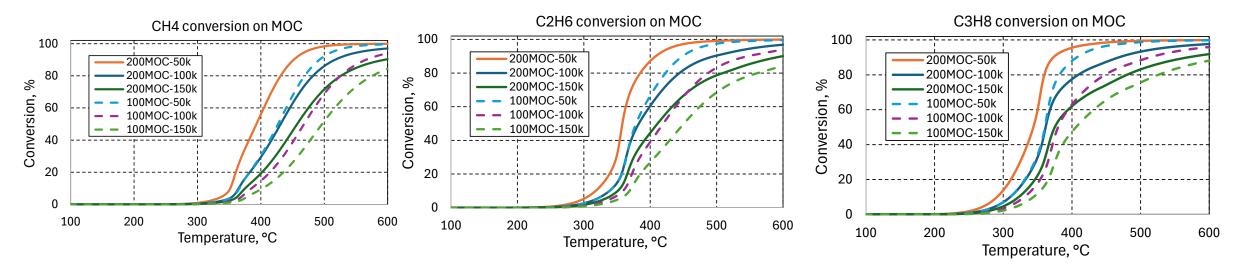
Model modification, verifications and simulation with coated, cordierite supported PtPd catalysts (400 cpsi, 50.000 – 150.000 h⁻¹, 100–200 g/cft PtPd (1:4, hydrothermally aged at 700°C/20h)

Simulated reactions in CH_4 engine exhaust gas, temperature ramp 5 °C/min, 1500 ppm CH_4 , 300 ppm C_2H_6 , 100 ppm C_3H_8 , 150 ppm FA, 500 ppm CO and 1050 ppm NO_x in feed)

- All CH₄ reacts through CO to CO₂
- FA also from CH₄ engine
- $CH_4 + 1.5 O_2 \rightarrow CO + 2 H_2O$ (CO formation)
- CO + 0.5 O₂ \rightarrow CO₂ Fast at CH₄ oxidation T
- HCHO + 0.5 O₂ \rightarrow CO + H₂O (FA oxidation)

High-PGM MOC required to activate CH_4 , C_2H_6 , C_3H_8 oxidation, formed CO oxidized very fast.

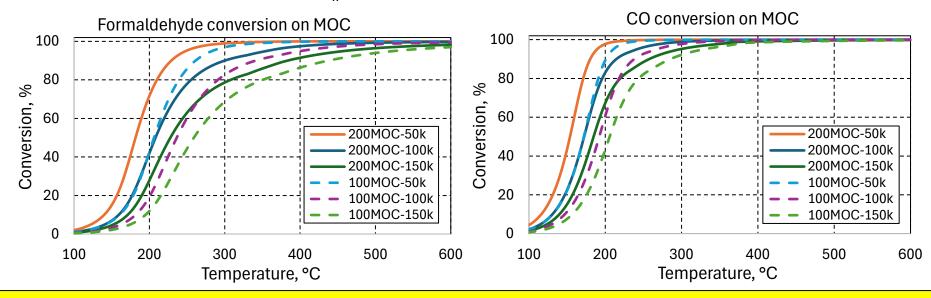
Experimental data: Top. Catal. 59(2016) 1049 and 62(2019) 315


- Methane removal very challenging most difficult HC to oxidize → high PtPd loadings and catalyst volumes required
- Pore diffusions with the pore size of 0.1 μm included in modelling (alumina-based catalyst)
- MOC removed efficiently CO, FA well but more limited for non-methane saturated HCs

Methane oxidation catalyst (MOC)- simulations

Effect of PtPd(1:4) loading and space velocity (SV) on CH_4 , C_2H_6 and C_3H_8 oxidation with MOC (400 cpsi)

Simulation with CH_4 engine exhaust gas, temperature ramp at 50–600 °C by 5°C/min, 1500 ppm CH_{4} , 300 ppm C_2H_6 , 100 ppm C_3H_8 , 500 ppm CO, 150 ppm FA and 1050 ppm NO_x in feed (g/cft MOC-SV, k=000)


- Methane oxidation light-off (T_{50}) at 395–500 °C high SV and PtPd loading required reach higher efficiency
- SVs related to the catalyst with 400 cpsi, if lower cell densities, correspondingly lower SVs needed (challenges to add high PtPd in low density catalysts and low volumetric coating amount)
- The light-off temperature T_{50} of saturated HCs with 200 g/cft and 50.000 h⁻¹: CH₄ (395°C) > C₂H₆ (360°C) > C₃H₈ (340°C)
- The PtPd loading controls the light-off but large volumes are required to promote high-T conversions

Methane oxidation catalyst (MOC)- simulations

Effect of PtPd(1:4) loading and space velocity on **formaldehyde and CO oxidation** with MOC (400 cpsi)

Simulation with CH_4 engine exhaust gas, temperature ramp at 50–600 °C by 5 °C/min, 1500 ppm $CH_{4,}$ 300 ppm C2H6, 100 ppm C_3H_8 , 500 ppm CO, 150 ppm FA and 1050 ppm NO_x in feed (g/cft MOC SV, k=000)

- Formaldehyde oxidation light-off (T₅₀) at 180-260°C
- CO oxidation light-off (T₅₀) at 150-205°C
- Formaldehyde and CO oxidized easily but larger catalyst volumes enable to reach conversions above 90%
- Even lower Pt and Pd loadings can be applied for FA and CO removal (see ASC simulations)

Summary and conclusions

- In this study, tailored emission catalyst modelling and simulations for future marine ATS applications
- Extruded vanadium-SCR catalysts have been applied traditionally for NO_x removal in marine applications
- In addition to external diffusion, it is important to include pore diffusion in modelling of extruded SCR catalysts and 2-layer ASCs
- The change from diesel (MGO, LFO) to methanol, ammonia or methane fuels changes significantly the exhaust gas composition:
 - + no/low SO_x, low particulates, less heavy HCs, no/less CO₂
 - Higher water, increasing risks for pollutant or GHG emissions like formaldehyde, methanol, ammonia, methane, N₂O
 - +/- Temperatures, raw-NO_x
- V-SCR catalyst catalyzes MeOH and C₃H₆(diesel) oxidation to CO, which is oxidized slowly to CO₂
- ASC after the SCR catalyst removes efficiently ammonia but also remaining methanol, formaldehyde, diesel-HCs and CO above 250°C
- Extruded V-SCR has a high ammonia adsorption ability, which can prevent ammonia emissions from NH₃ engines at low temperatures
- Higher raw-NO_x emissions (e.g. from NH₃ engines) demand re-design or reserve for SCR functionality due to higher targets for NO_x and NH₃ conversions small ASC promotes significantly
- High loadings like 100–200 g/cft PtPd (1:4) required in MOC to reach methane light-off around 400 °C sulfation and desulfation experiments exists and will be included next into these models
- These reaction and parameter calibrations for various pollutants give a good base for the future case studies with green fuels

Thank You

Acknowledgement

This study is part of the Flex-CPT project, which is Co-funded by Business Finland

Contact: teuvo.maunula@uwasa.fi

