
Simulation and design of emission catalysts for 
marine applications with green hydrogen, ammonia, 
methanol, methane and diesel fuels
MODEGAT 8 

21–23 September 2025 – Bad Herrenalb

Teuvo Maunula T1,2), Jan Němec1), Alireza Kakoee1), Jari Hyvönen3) , Jan Torrkulla3) , Viktor Heir3)

and Maciej Mikulski1)

1) University of Vaasa, Technology and Innovations, Energy Technology, Vaasa, Finland

2) University of Oulu, Environmental and chemical engineering, Oulu, Finland

3) Wärtsilä Finland Oy, Vaasa, Finland1



Background
 The emission focus has moved from harmful-to-health pollutants (CO, HCs, NOx, SOx, particulates, NH3) to green house gases (GHG).

 Light-duty cars and other applications are moving fast electric or hybrids, but liquid fuels needed in heavy-duty applications

 Pollutant limits will remain the same or tightened in near future

 Harmonization: Emission limits independent on fuel or engine type (multi-fuel engines)

 Green fuels can decrease (NOx, SOx ,particulates, other poisons) or increase (NOx, CH4, N2O, NH3) pollutant emissions

 Green electricity has a key role in the move to carbon-free fuels and energy
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Green fuels for marine applications
 Carbon neutral targets for year 2050 in marine field (IMO) in many leading industrial countries

 No full electrification in near future for heavier ships due to on-board energy storage capacity – partial hybridization possible

 Energy-dense fuels like liquid methanol (MeOH), methane (CH4) and ammonia (NH3) planned to replace diesel in marine applications.

 Fuel cost and consumption are driving commercial force in heavy ship applications.

 Flexible use of fuels necessary by the fuel availability/distribution, engine technology and costs
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Emission limits and aftertreatment systems

 Marine emission regulations (Tier III latest) for pollutants are not that strict (focus has been on NOx and SOx) as in on-wheel applications 
but the effect of new fuels on emissions requires development and design for catalytic aftertreatment systems (ATS)

 In marine applications, extruded vanadium-SCR catalysts with low cell density and thick walls used for NOx removal

 In this study, improved capabilities to simulate emission catalyst functionality in marine applications

 The effect of pore diffusion on catalyst efficiency in extruded V-SCR catalyst

 Oxidation of NH3, MeOH, formaldehyde (FA), hydrocarbon and CO on V-SCR and Ammonia Slip Catalysts (ASC) in diesel (REF), MeOH, 
and NH3 engine exhaust gas conditions

 Methane Oxidation Catalysts (MOC) functionality in CH4 engine exhaust gas conditions.
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Methods
 Pollutant removal efficiencies on catalysts investigated in single fuel conditions using GT Power program tools.

 Ready emission catalyst models using modified parameters

 Volumetric active site density defined by the catalyst (SCR) or active metal (PGM) amounts  

 1D model of flow-through catalysts by defined reactions in GT Power libraries 

 Mass, energy and momentum balances along the channels, quasi-steady flow solver, assumption of a short residence time

 Possible to simulate pore diffusion (d50 0.1–10 µm) in thick coating layers, effects seen best with high SV (short residence time) range

 External diffusion built-in (channel diameter/shape in catalyst)

 ASC model based on 2-layer structure and model (top SCR and bottom Pt-DOC)

 Based on Fe-SCR + Pt-DOC kinetics – Pt-layer dominates, thus similar with varying SCR catalysts

 Pore diffusion essential in 2-layer ASC models- controlling mass transfer and selectivity in layers

 In final V-SCR+ASC simulations, pore diffusion included in both units – d50 of 0.25 µm for pores
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Methods –model validation
 Emission catalyst models in GT Power applied with partly modified kinetic and mass transfer parameters

 Adjusted parameters by available experimental and publication data in experimental conditions (rates, NH3 adsorption-desorption)

 Verification of pore diffusion effects by experimental data with extruded marine V-SCR catalysts (≈ 60 cpsi, V2O5/TiO2-WO3)

 Modification and verification of 2-layer ASC model by experimental data on coated catalysts (400 cpsi) 

 Defined reactions and kinetic parameters for MeOH, FA and CO reactions on extruded V-SCR and 2-layer Pt-ASC (Top. Catal. On-line 2025)
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Simulation methods
 Mainly separate simulations for NH3-SCR (steady state = SS) and oxidation reactions (light-off) on extruded V-SCR and V-SCR+ASC

 NH3-SCR simulation in SS steps at 200–500 °C for 2–6 min for temperature-ANR (NH3/NOx) points → criterion deNOx (10/5 ppm NH3)

 Additional temperature ramp test with V-SCR and ASC to simulate transient SCR performance with fixed ANR = 0.9

 MeOH, FA, CO and HC oxidation reactions simulated in a light-off ramp on V-SCR, ASC and MOC at 0 – 500/600 °C by the rate of 5 °C/min

 A feed matrix to simulate key reactions and pollutant removal in exhaust gas feeds (not connected to exact real-world engine emissions:
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Compound Diesel MeOH CH4 NH3

NO, ppm 1000 1000 1000 3000

NO2, ppm 50 50 50 150
NH3, ppm 0 0 0 300
CH4, ppm 0 0 1500 0
Ethane, ppm 0 0 300 0
Propane, ppm 0 0 100 0

Propene, ppm 100 0 0 0

Methanol, ppm 0 1200 0 0

Formaldehyde, ppm 20 300 150 0

CO, ppm 500 500 500 0
Oxygen, % 10 10 10 10
Water, % 6 6 8 12
CO2, % 6 6 6 0
Nitrogen bal. bal. bal. bal. 

Temp, °C SV, h-1
16000 12000 9000 6000

200 Alfa1 Alfa8 Alfa15 Alfa22
250 Alfa2 Alfa9 Alfa16 Alfa23
300 Alfa3 Alfa10 Alfa17 Alfa24
350 Alfa4 Alfa11 Alfa18 Alfa25
400 Alfa5 Alfa12 Alfa19 Alfa26
450 Alfa6 Alfa13 Alfa20 Alfa27
500 Alfa7 Alfa14 Alfa21 Alfa28

Alfa varied: 0.6, 0.8, 0.9, 1.0, 1.1, 1.2 and 1.4
Each test point 2-6 min (short) to see dynamic responses
Calculated criterion and max NOx conv in alfa point

= ANR



MOC

Catalytic reactions
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V-SCR catalyst
ASC

 Catalytic reactions by GT Power library (NH3 adsorption and metal sites, rate equations, inhibition effects (CO, HC, 
NO) together with added reactions :

NH3 + S1 ⇌ NH3–S1 Non-productive adsorption
NH3 + S2 ⇌ NH3-S2 Adsorption enabling SCR
NH3 + NO + 0.25 O2 → N2 + 1.5 H2O Standard SCR
NH3 + 0.5 NO + 0.5 NO2 → N2 + 1.5H2O Fast SCR
NH3 + 0.75 NO2 → 0.875 N2 + 1.5H2O Slow SCR
NH3 + 1.25 NO2 → 0.875 N2 + N2O + 1.5H2O N2O formation by NO2 promotion
NO + 0.5 O2 ⇌ NO2 NO2 formation
NH3 + 1.25 O2 → NO + 1.5 H2O NH3 oxidation to NO
NH3 + 0.75 O2 → 0.5 N2 + 1.5 H2O NH3 oxidation to N2

CH3OH + O2 → CO + 2 H2O  MeOH oxidation to CO formation
CH3OH + O2 → HCHO + H2O MeOH oxidation to formaldehyde
HCHO + 0.5 O2 → CO + H2O FA oxidation to CO
C3H6 + 3 O2 → 3 CO + 3 H2O Propene (diesel-HC) oxidation to CO
CO + 0.5 O2 → CO2 CO oxidation

CH4 + 1.5 O2 → CO + 2 H2O CH4 oxidation to CO and CO2 on MOC
C2H6 + 2.5 O2 → 2 CO + 3 H2O Ethane oxidation to CO on MOC
C3H8 + 3.5 O2 → 3 CO + 4 H2O Propane oxidation to CO on MOC
CO + 0.5 O2 → CO2 CO oxidation on MOC – fast
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Extruded V-SCR catalyst

 Effect of pore size on diffusion in extruded V-SCR catalyst (60 cpsi / 360 µm walls, catalyst 380 g/L)
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Criterion deNOx% by 10 ppm NH3 in ANR window

No pore diffusion

400 °C

0.25 µm
0.25 µm

> 50 nm

2–50 nm

< 2 nm

Heterogenous catalytic reactions 
in porous catalysts (a set of macro-, 
meso- and micropores)

- Pore diffusion more meaningful in thick catalyst walls of extruded SCR catalysts
- SV (space velocity (s-1), residence time (s) = 1/SV) is the primary variable
- Compared simulations with 30.000 and 15.000 h-1, when reaction times limited
- Possible to reach high NOx conversions with 30.000 h-1 and d=0.25 µm but then high NH3 slip (>10 ppm)
- Pore diffusion limits clearly when pore sizes below 1 µm with 15.000 h-1

→ 0.25 µm used in later simulations

300 °C
max 

deNOx



Extruded V-SCR catalyst

 Verification of pore diffusion parameters: Experimental vs simulations
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- When including pore diffusion with smaller pore sizes (100-250 nm) in modelling, NH3 slip near to experimental
- In addition: tolerances in modelling (kinetic parameters, pores) and experiments (uniformity of NH3/NOx, analysis, other)?
- Instead of pore diffusion, possible to adjust active site densities (lumped parameters)
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 Effect of pore diffusion on coated V-SCR catalyst performance – same catalyst kinetics

 400 cpsi cordierite / 100 µm walls + 50 µm coating (250 g catalyst/L)
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Criterion deNOx% by 10 ppm NH3 in ANR window

- Pore diffusion has low effects on a coated substrate of 400 cpsi with 50 µm catalyst layer
- Pore diffusion has small effects on modelling of coated SCR catalyst – limitation started at 

around 60.000 h-1
→ often lumped in kinetic parameters in mobile applications
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Extruded V-SCR catalyst –NH3 adsorption capacity

Confirmed NH3 adsorption capacity (GT Power library) on the V-SCR catalyst (60 cpsi) simulating a NH3 adsorption-
desorption detection method (15.000 h-1)
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NH3 adsorption capacity (µmol/g) on S1+S2 sites by temperatures at 200-600 °C

Temperature, °C 200 250 300 350 400 450 500
By desorption 47 42 27 10 1 0 0
In NH3/N2 flow 78 69 54 37 23 13 7
Ads step 81 not calculated

Increasing capacity Low, decreasing capacity

- Adsorption on two sites (S1, S2) in the model and calculated the adsorption capacity and coverage
- Adsorption capacities (µmol/g) matched well to experimental detections on stable V2O5/TiO2-WO3 catalysts
- It exists three types of NH3 adsorption strength: 1) Strongly bound (N2 in gas phase), 2) Strongly + weakly bound (NH3

in gas phase), 3) NH3 adsorbed in reaction conditions (NH3 + NOx in gas phase) → included in models
- NH3 adsorption capacity by desorption relates to strongly (chemically) bound NH3

- NH3 adsorption capacity promotes SCR activity at low temperatures
- High volumetric adsorption capacity in extruded V-SCR catalysts (catalyst ≈ 350-500 g/L)

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

S1
, S

2-
co

ve
ra

ge
, %

Te
m

pe
ra

tu
re

 , 
°C

/ N
H

3
,p

pm

Time (s)

Adsorption-desorption of ammonia on V-SCR
SV = 15 000 h–1

T_in (°C)
NH3_in (ppm)
NH3_out (ppm)
S1-NH3
S2-NH3

N2 flow at 200°C DesorptionN2 Ads



Coated  Ammonia Slip Catalyst - verification

 Modified library parameters (Scheur et al., Appl. Catal. 111-112(2012) 445) to match better to recent experimental results with 2-layer 
coated metallic/500 cpsi/50 µm  (Maunula 2020 Emission Contr. Sci. Tech. 6(2020) 390)

 Simulated first ASC to calibrate NH3 conversions and selectivity (N2, NO, NO2, N2O) with 100 ppm NH3 only in ASC feed
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Progress in simulation

- NH3 conversions similar as detected in experimental conditions,  e.g. with 2-3 g/cft Pt based on 2-layer ASC – very low 
volume and Pt loading limits the NH3 conversion but keep NOx/N2O formation acceptable

- N2O formation range and magnitude realistic for aged ASC – GHG formation risk!
- NOx (mostly NO) had a maximum of 16% at high temperatures with 100.000 h-1
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NOx removal on extruded V-SCR and ASC - simulations
 Comparisons by criterion NOx conversion in SS, when reached 5 or 10 ppm NH3 slip in SS by SV of 6.000 – 16.000 h-1
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- Extruded V-SCR: 60 cpsi
- Coated ASC: 400 cpsi
- pores d = 0.25 µm
- Inlet 1050 ppm NOx, NO2 /NO=0.05

- The range of 6000 – 16.000 h-1 is the design range for extruded SCR by experiments and simulations
- 5 ppm NH3 slip criterion shows the sensitivity by SV, a better support to SCR design
- ASC promotes to reach high NOx conversion with high SV conditions (small SCR catalyst or high flow rate)
- Possible to reach high NOx conversion with high SV but NH3 slip start to limit (design, control)
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NOx removal on extruded V-SCR and ASC - simulations

 Criterion NOx conversion in SS, when reached 5 or 10 ppm NH3 slip in SS - Effect of inlet NOx concentration
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- Extruded V-SCR: 60 cpsi,
- Coated ASC: 400 cpsi
- pores d = 0.25 µm
- SCR/ASC = 10
- Inlet 1050 ppm or 3150 ppm NOx

with NO2 /NO=0.05

- Higher raw NOx emissions (e.g. 3×) reported for NH3 engines, which will require higher SCR efficiency 
(deNOx e.g. 80 → 95 %)

- A promotion by a small ASC enables to reach high NOx conversion and NH3 slip targets with high SVs
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NOx removal on extruded V-SCR – transient simulation

 Transient study with V-SCR: Diesel engine exhaust gas at 50–500 °C with 20 °C/min, NH3 injection at 250 °C with 
ANR = 0.9. Two extreme initial states: NH3 sites empty × NH3 sites full.
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- Extruded V-SCR: 60 cpsi,
- Pore d = 0.25µm
- SV 16.000 h-1

- Inlet 1050 ppm NOx with NO2 /NO=0.05
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- Simulation in transients showed the effects of 
NH3 adsorption and desorption in a heating ramp

- If SCR catalyst full filled with NH3, quite high NH3

slip (max 120 ppm) in the heating ramp when 
ANR = 0.9 starts at 250 °C

- If SCR empty from NH3 at 50 °C, max NH3 slip was 
10 ppm in this ramp test
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NOx removal on extruded V-SCR – transient simulation

 Transient study with V-SCR: Ammonia engine exhaust gas at 50–500 °C with 20 °C/min, NH3 injection at 250 °C 
with ANR = 0.9. Two extreme initial states: NH3 sites empty × NH3 sites full.

17

- Extruded V-SCR: 60 cpsi
- Pore d50 = 0.25 µm
- SV 16.000 h-1

- Inlet 3150 ppm NOx with NO2 /NO=0.05

- A higher risk for NH3 slip when NH3 from engine and urea injection  → SCR control to prevent this
- Max NH3 slip a 165 ppm with zero initial NH3 and 295 ppm with full-load SCR catalyst
- NH3-SCR reaction with feed NH3 starts also before the NH3 injection at 250 °C

Initial ads-NH3=0

Initial ads-NH3=100
NH3 injection

NH3 injection
300 ppm NH3 from engine NH3 from engine
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- Extruded V-SCR: 60 cpsi
- Coated ASC: 400 cpsi
- Pore d = 0.25µm
- SV 16.000 h-1

- SCR/ASC = 10
- Inlet 3150 ppm NOx with NO2 /NO=0.05

 Transient study with V-SCR: Ammonia engine exhaust gas at 50-500°C with 20°C/min, NH3 injection at 250°C with 
ANR=0.9. Two extreme initial states: NH3 sites empty - NH3 sites full.
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- The presence of ASC prevented well NH3 and CO slip above 200 °C
- Max NH3 slip about 60 ppm after NH3 injection start-up
- “Empty” V-SCR has a good buffering ability to prevent NH3 emission at low temperatures
- Additional NH3 adsorption capacity on the zeolite in ASC



0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350 400 450 500 550 600

C
on

ve
rs

io
n/

fo
rm

at
io

n

Temperature (°C)

C-compounds - MeOH only feed
V-SCR

CO formation

FA formation

MeOH conversion

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350 400 450 500 550 600

C
on

ve
rs

io
n/

fo
rm

at
io

n

Temperature (°C)

C-compounds- MeOH only feed
ASC-dual

CO formation

FA formation

MeOH conversion

Extruded V-SCR catalyst in MeOH application
 MeOH, formaldehyde (FA, HCHO) and CO oxidation reactions added for the V-SCR model
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- Investigated MeOH conversion and selectivity separately on V-SCR and ASC
- Small Pt-ASC can prevent well the formation of side reaction products (FA, CO)
- High SV, low Pt loading  and pore diffusion prevent to reach near-100% conversions on ASC
- SCR catalyst: ASC = 10 in this verification state

Simulated reactions on extruded V-SCR (60 cpsi, 15.000 h-1) and Pt-ASC (400 cpsi, 150.000 h-1) in MeOH engine exhaust gas,
temperature ramp 5 °C/min, 1200 ppm MeOH in feed – no FA/CO)

- All MeOH and FA reacts through CO to CO2

- V-SCR catalysts are good in partial HC oxidation 
and poor in CO oxidation→ net CO formationV-SCR only

15.000 h-1
Pt-ASC only
150.000 h-1
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Extruded V-SCR catalyst in MeOH application

 Simulation with extruded V-SCR (60 cpsi, 15.000 or 6.000 h-1) and coated ASC - pore diffusion by d50 0.25 µm
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Simulated reactions on extruded V-SCR (60 cpsi) and Pt-ASC (400 cpsi) in MeOH engine exhaust gas, temperature ramp 5 °C/min, 
1200 ppm MeOH, 500 ppm CO and 300 ppm FA in feed

- Investigated the oxidation activities on V-SCR catalyst and ASC by SVs
- T50 with 15.000/6.000 h-1 about 245/225°C for MeOH, 295/265°C for FA and 455/365°C for CO on V-SCR only
- Net formation of FA and particularly CO typical on V-SCR- Max CO formation about same with 6.000 and 15.000 h-1

- Pt-ASC (SCR/ASC = 4–20) able to cut efficiently FA and CO → SCR/ASC ratio of 4 was very efficient
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Methane oxidation catalyst (MOC)- model verification

Model modification, verifications and simulation with coated, cordierite supported PtPd catalysts (400 cpsi, 50.000 –
150.000 h-1, 100–200 g/cft PtPd (1:4, hydrothermally aged  at 700°C/20h) 
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Simulated reactions in CH4 engine exhaust gas, temperature ramp 5 °C/min, 1500 ppm CH4, 300 ppm C2H6, 100 ppm C3H8, 150 ppm FA, 500 
ppm CO and 1050 ppm NOx in feed)

- Methane removal very challenging – most difficult HC to oxidize → high PtPd loadings and catalyst volumes required
- Pore diffusions with the pore size of 0.1 µm included in modelling (alumina-based catalyst)
- MOC removed efficiently CO, FA well but more limited for non-methane saturated HCs

- All CH4 reacts through CO to CO2

- FA also  from CH4 engine
- CH4 + 1.5 O2 → CO + 2 H2O (CO formation)
- CO + 0.5 O2 → CO2 Fast at CH4 oxidation T
- HCHO + 0.5 O2 → CO + H2O (FA oxidation) 

High-PGM MOC required to activate CH4, C2H6, C3H8

oxidation, formed CO oxidized very fast.
Experimental data: Top. Catal. 59(2016) 1049 and 62(2019) 315
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Methane oxidation catalyst (MOC)- simulations

Effect of PtPd(1:4) loading and space velocity (SV) on CH4, C2H6 and C3H8 oxidation with MOC  (400 cpsi) 
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Simulation with CH4 engine exhaust gas,  temperature ramp at 50–600 °C by 5°C/min, 1500 ppm CH4, 300 ppm C2H6, 100 ppm C3H8, 500 
ppm CO, 150 ppm FA and 1050 ppm NOx in feed (g/cft MOC-SV, k=000)
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- Methane oxidation light-off (T50) at 395–500 °C – high SV and PtPd loading required reach higher efficiency
- SVs related to the catalyst with 400 cpsi, if lower cell densities, correspondingly lower SVs needed (challenges to add high 

PtPd in low density catalysts and low volumetric coating amount)
- The light-off temperature T50 of saturated HCs with 200 g/cft and 50.000 h-1: CH4 (395°C) > C2H6 (360°C) > C3H8 (340°C)
- The PtPd loading controls the light-off but large volumes are required to promote high-T conversions



Methane oxidation catalyst (MOC)- simulations

Effect of PtPd(1:4) loading and space velocity on formaldehyde and CO oxidation with MOC (400 cpsi) 
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Simulation with CH4 engine exhaust gas, temperature ramp at 50–600 °C by 5 °C/min, 1500 ppm CH4, 300 ppm C2H6, 100 ppm C3H8, 500 
ppm CO, 150 ppm FA and 1050 ppm NOx in feed (g/cft MOC SV, k=000)
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- Formaldehyde oxidation light-off (T50) at 180-260°C 
- CO oxidation light-off (T50) at 150-205°C
- Formaldehyde and CO oxidized easily but larger catalyst volumes enable to reach conversions above 90%
- Even lower Pt and Pd loadings can be applied for FA and CO removal (see ASC simulations)



Summary and conclusions
 In this study, tailored emission catalyst modelling and simulations for future marine ATS applications

 Extruded vanadium-SCR catalysts have been applied traditionally for NOx removal in marine applications

 In addition to external diffusion, it is important to include pore diffusion in modelling of extruded SCR catalysts and 2-layer ASCs

 The change from diesel (MGO, LFO) to methanol, ammonia or methane fuels changes significantly the exhaust gas composition:

+ no/low SOx, low particulates, less heavy HCs, no/less CO2

- Higher water, increasing risks for pollutant or GHG emissions like formaldehyde, methanol, ammonia, methane, N2O

+/- Temperatures, raw-NOx

 V-SCR catalyst catalyzes MeOH and C3H6(diesel) oxidation to CO, which is oxidized slowly to CO2

 ASC after the SCR catalyst removes efficiently ammonia but also remaining methanol, formaldehyde, diesel-HCs and CO above 250°C

 Extruded V-SCR has a high ammonia adsorption ability, which can prevent ammonia emissions from NH3 engines at low temperatures

 Higher raw-NOx emissions (e.g. from NH3 engines) demand re-design or reserve for SCR functionality due to higher targets for NOx and 
NH3 conversions – small ASC promotes significantly

 High loadings like 100–200 g/cft PtPd (1:4) required in MOC to reach methane light-off around 400 °C – sulfation and desulfation
experiments exists and will be included next into these models

 These reaction and parameter calibrations for various pollutants give a good base for the future case studies with green fuels
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